Catalytic Chemistry Derived Artificial Solid Electrolyte Interphase for Stable Lithium Metal Anodes Working at 20 mA cm-2 and 20 mAh cm-2

被引:53
作者
Cheng, Yifeng [1 ,2 ]
Wang, Zhijie [6 ]
Chen, Jinbiao [1 ]
Chen, Yuanmao [1 ]
Ke, Xi [1 ]
Wu, Duojie [2 ]
Zhang, Qing [3 ]
Zhu, Yuanmin [4 ]
Yang, Xuming [5 ]
Gu, Meng [2 ]
Guo, Zaiping [6 ]
Shi, Zhicong [1 ]
机构
[1] Guangdong Univ Technol, Inst Batteries, Sch Mat & Energy, Guangzhou 510006, Peoples R China
[2] Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
[3] Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen 518055, Peoples R China
[4] Dongguan Univ Technol, Sch Mat Sci & Engn, Dongguan 523413, Peoples R China
[5] Shenzhen Univ, Coll Chem & Environm Engn, Graphene Composite Res Ctr, Shenzhen 518060, Peoples R China
[6] Univ Adelaide, Sch Chem Engn & Adv Mat, Adelaide, SA 5005, Australia
关键词
Bilayer Layer; Catalytic Chemistry; Dendrite-Free; Lithium Metal Anodes; Solid Electrolyte Interphase; PERFORMANCE; INTERFACES; STABILITY;
D O I
10.1002/anie.202305723
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A stable solid electrolyte interphase (SEI) layer is crucial for lithium metal anode (LMA) to survive in long-term cycling. However, chaotic structures and chemical inhomogeneity of natural SEI make LMA suffering from exasperating dendrite growth and severe electrode pulverization, which hinder the practical application of LMAs. Here, we design a catalyst-derived artificial SEI layer with an ordered polyamide-lithium hydroxide (PA-LiOH) bi-phase structure to modulate ion transport and enable dendrite-free Li deposition. The PA-LiOH layer can substantially suppress the volume changes of LMA during Li plating/stripping cycles, as well as alleviate the parasitic reactions between LMA and electrolyte. The optimized LMAs demonstrate excellent stability in Li plating/stripping cycles for over 1000 hours at an ultra-high current density of 20 mA cm(-2) in Li||Li symmetric cells. A high coulombic efficiency up to 99.2 % in Li half cells in additive-free electrolytes is achieved even after 500 cycles at a current density of 1 mA cm(-2) with a capacity of 1 mAh cm(-2).
引用
收藏
页数:9
相关论文
共 50 条
[1]   A Scalable Approach to Dendrite-Free Lithium Anodes via Spontaneous Reduction of Spray-Coated Graphene Oxide Layers [J].
Bai, Maohui ;
Xie, Keyu ;
Yuan, Kai ;
Zhang, Kun ;
Li, Nan ;
Shen, Chao ;
Lai, Yanqing ;
Vajtai, Robert ;
Ajayan, Pulickel ;
Wei, Bingqing .
ADVANCED MATERIALS, 2018, 30 (29)
[2]   The quest for the holy grail of solid-state lithium batteries [J].
Bonnick, Patrick ;
Muldoon, John .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (05) :1840-1860
[3]   Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization [J].
Cao, Xia ;
Ren, Xiaodi ;
Zou, Lianfeng ;
Engelhard, Mark H. ;
Huang, William ;
Wang, Hansen ;
Matthews, Bethany E. ;
Lee, Hongkyung ;
Niu, Chaojiang ;
Arey, Bruce W. ;
Cui, Yi ;
Wang, Chongmin ;
Xiao, Jie ;
Liu, Jun ;
Xu, Wu ;
Zhang, Ji-Guang .
NATURE ENERGY, 2019, 4 (09) :796-805
[4]   Opportunities and Challenges of High-Energy Lithium Metal Batteries for Electric Vehicle Applications [J].
Chen, Shuru ;
Dai, Fang ;
Cai, Mei .
ACS ENERGY LETTERS, 2020, 5 (10) :3140-3151
[5]   Boosting the electrochemical performance of 3D composite lithium metal anodes through synergistic structure and interface engineering [J].
Chen, Yuanmao ;
Ke, Xi ;
Cheng, Yifeng ;
Fan, Mouping ;
Wu, Wenli ;
Huang, Xinyue ;
Liang, Yaohua ;
Zhong, Yicheng ;
Ao, Zhimin ;
Lai, Yanqing ;
Wang, Guoxiu ;
Shi, Zhicong .
ENERGY STORAGE MATERIALS, 2020, 26 :56-64
[6]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[7]   Lithium Host:Advanced architecture components for lithium metal anode [J].
Cheng, Yifeng ;
Chen, Jinbiao ;
Chen, Yuanmao ;
Ke, Xi ;
Li, Jie ;
Yang, Yong ;
Shi, Zhicong .
ENERGY STORAGE MATERIALS, 2021, 38 :276-298
[8]   Lithiophobic-lithiophilic composite architecture through co-deposition technology toward high-performance lithium metal batteries [J].
Cheng, Yifeng ;
Ke, Xi ;
Chen, Yuanmao ;
Huang, Xinyue ;
Shi, Zhicong ;
Guo, Zaiping .
NANO ENERGY, 2019, 63
[9]   Stabilizing lithium metal anode by octaphenyl polyoxyethylene-lithium complexation [J].
Dai, Hongliu ;
Gu, Xingxing ;
Dong, Jing ;
Wang, Chao ;
Lai, Chao ;
Sun, Shuhui .
NATURE COMMUNICATIONS, 2020, 11 (01)
[10]   All-in-One Structured Lithium-Metal Battery [J].
Dong, Lei ;
Zhang, Chang ;
Liu, Wei .
ADVANCED SCIENCE, 2022, 9 (17)