Robust Radar-Based Vital Sensing With Adaptive Sinc Filtering and Random Body Motion Rejections

被引:5
作者
Hazra, Souvik [1 ]
Fusco, Alessandra [1 ,2 ]
Kiprit, Gamze Naz [1 ,2 ]
Stadelmayer, Thomas [1 ]
Habib, Sarfaraz [1 ]
Servadei, Lorenzo [1 ,2 ]
Wille, Robert [2 ]
Weigel, Robert [3 ]
Santra, Avik [1 ]
机构
[1] Infineon Technol AG, D-85579 Neubiberg, Germany
[2] Tech Univ Munich, D-80333 Munich, Germany
[3] Friedrich Alexander Univ Erlangen Nuremberg, D-91054 Erlangen, Germany
关键词
Heart rate; Filter banks; Radar; Monitoring; Filtering algorithms; Low-pass filters; Estimation; Sensor signal processing; sensor applications; frequency modulated continuous wave (FMCW radar); heart rate (HR); remote monitoring; respiratory rate (RR); vital signs;
D O I
10.1109/LSENS.2023.3266237
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we propose a noncontact vital sign monitoring algorithm based on 60-GHz frequency modulated continuous wave (FMCW) radar. At the heart of the algorithm is a bank of sinc filters covering the heart and respiratory frequencies of an healthy adult. The filter bank is adapted, in successive iterations, to the specific cardiorespiratory frequencies of the monitored subject. The adaptability of the algorithm ensures an accurate estimate of heart rate (HR) and respiratory rate (RR) for a subject sitting in front of the radar at a distance between 0.3 to 1.1 m while being robust to minor body movements and harmonics. The efficiency of the solution is demonstrated on an experimental dataset including recordings of ten subjects, where we obtain an root mean square error (RMSE) of 6.16 bpm for HR and 2.09 rpm for RR.
引用
收藏
页数:4
相关论文
共 23 条
  • [1] Ahmad A, 2018, IEEE RAD CONF, P1450, DOI 10.1109/RADAR.2018.8378778
  • [2] Remote Monitoring of Human Vital Signs Using mm-Wave FMCW Radar
    Alizadeh, Mostafa
    Shaker, George
    Martins De Almeida, Joao Carlos
    Morita, Plinio Pelegrini
    Safavi-Naeini, Safeddin
    [J]. IEEE ACCESS, 2019, 7 : 54958 - 54968
  • [3] Improved Contactless Heartbeat Estimation in FMCW Radar via Kalman Filter Tracking
    Arsalan, Muhammad
    Santra, Avik
    Will, Christoph
    [J]. IEEE SENSORS LETTERS, 2020, 4 (05)
  • [4] Chen Zekun, 2022, 2022 Global Reliability and Prognostics and Health Management (PHM-Yantai), P1, DOI 10.1109/PHM-Yantai55411.2022.9942111
  • [5] Improved Heartbeat Detection by Exploiting Temporal Phase Coherency in FMCW Radar
    Choi, Ho-Ik
    Song, Woo-Jin
    Song, Heemang
    Shin, Hyun-Chool
    [J]. IEEE ACCESS, 2021, 9 : 163654 - 163664
  • [6] Costa Tiago, 2022, 2022 IEEE International Conference on E-health Networking, Application & Services (HealthCom), P161, DOI 10.1109/HealthCom54947.2022.9982759
  • [7] Radar-based sleep stage classification in children undergoing polysomnography: a pilot-study
    de Goederen, R.
    Pu, S.
    Viu, M. Silos
    Doan, D.
    Overeem, S.
    Serdijn, W. A.
    Joosten, K. F. M.
    Long, X.
    Dudink, J.
    [J]. SLEEP MEDICINE, 2021, 82 : 1 - 8
  • [8] Dela Cruz Jennifer C., 2021, 2021 IEEE 4th International Conference on Computer and Communication Engineering Technology (CCET), P382, DOI 10.1109/CCET52649.2021.9544412
  • [9] Deshmukh SD, 2015, 2015 INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING (ICPC)
  • [10] Equivital Ltd. Cambridge U.K., EQ EQ LIF