Peptide Self-Assembly into Amyloid Fibrils at Hard and Soft Interfaces-From Corona Formation to Membrane Activity

被引:14
作者
John, Torsten [1 ,2 ,4 ]
Martin, Lisandra L. [2 ]
Abel, Bernd [1 ,3 ]
机构
[1] Univ Leipzig, Wilhelm Ostwald Inst Phys & Theoret Chem, Linnestr 3, D-04103 Leipzig, Germany
[2] Monash Univ, Sch Chem, Clayton, Vic 3800, Australia
[3] Univ Leipzig, Inst Chem Technol, Linnestr 3, D-04103 Leipzig, Germany
[4] MIT, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
amyloids; coronas; fibrils; membranes; nanoparticles; peptides; surfaces; AGGREGATION KINETIC-DATA; HOST-DEFENSE PEPTIDES; CROSS-BETA SPINE; PROTEIN AGGREGATION; ALPHA-SYNUCLEIN; GOLD NANOPARTICLES; LIPID-MEMBRANES; A-BETA; ALZHEIMERS-DISEASE; PARKINSONS-DISEASE;
D O I
10.1002/mabi.202200576
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Peptides and proteins are exposed to a variety of interfaces in a physiological environment, such as cell membranes, protein nanoparticles (NPs), or viruses. These interfaces have a significant impact on the interaction, self-assembly, and aggregation mechanisms of biomolecular systems. Peptide self-assembly, particularly amyloid fibril formation, is associated with a wide range of functions; however, there is a link with neurodegenerative diseases, such as Alzheimer's disease. This review highlights how interfaces affect peptide structure and the kinetics of aggregation leading to fibril formation. In nature, many surfaces are nanostructures, such as liposomes, viruses, or synthetic NPs. Once exposed to a biological medium, nanostructures are coated with a corona, which then determines their activity. Both accelerating and inhibiting effects on peptide self-assembly have been observed. When amyloid peptides adsorb to a surface, they typically concentrate locally, which promotes aggregation into insoluble fibrils. Starting from a combined experimental and theoretical approach, models that allow for a better understanding of peptide self-assembly near hard and soft matter interfaces are introduced and reviewed. Research results from recent years are presented and relationships between biological interfaces, such as membranes and viruses, and amyloid fibril formation are proposed.
引用
收藏
页数:17
相关论文
共 269 条
[1]   A role for helical intermediates in amyloid formation by natively unfolded polypeptides? [J].
Abedini, Andisheh ;
Raleigh, Daniel P. .
PHYSICAL BIOLOGY, 2009, 6 (01)
[2]   Macromolecular crowding at membrane interfaces:: Adsorption and alignment of membrane peptides [J].
Aisenbrey, Christopher ;
Bechinger, Burkhard ;
Groebner, Gerhard .
JOURNAL OF MOLECULAR BIOLOGY, 2008, 375 (02) :376-385
[3]  
Alcantar NA, 2000, J BIOMED MATER RES, V51, P343, DOI 10.1002/1097-4636(20000905)51:3<343::AID-JBM7>3.0.CO
[4]  
2-D
[5]   Foreign body reaction to biomaterials [J].
Anderson, James M. ;
Rodriguez, Analiz ;
Chang, David T. .
SEMINARS IN IMMUNOLOGY, 2008, 20 (02) :86-100
[6]   Identification of a helical intermediate in trifluoroethanol-induced alpha-synuclein aggregation [J].
Anderson, Valerie L. ;
Ramlall, Trudy F. ;
Rospigliosi, Carla C. ;
Webb, Watt W. ;
Eliezer, David .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (44) :18850-18855
[7]   ALZHEIMER-DISEASE AMYLOID BETA-PROTEIN FORMS CALCIUM CHANNELS IN BILAYER-MEMBRANES - BLOCKADE BY TROMETHAMINE AND ALUMINUM [J].
ARISPE, N ;
ROJAS, E ;
POLLARD, HB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (02) :567-571
[8]   A Condensation-Ordering Mechanism in Nanoparticle-Catalyzed Peptide Aggregation [J].
Auer, Stefan ;
Trovato, Antonio ;
Vendruscolo, Michele .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (08)
[9]   Oxidative Stress and Cell Membranes in the Pathogenesis of Alzheimer's Disease [J].
Axelsen, Paul H. ;
Komatsu, Hiroaki ;
Murray, Ian V. J. .
PHYSIOLOGY, 2011, 26 (01) :54-69
[10]   FORMATION OF MONOLAYER FILMS BY THE SPONTANEOUS ASSEMBLY OF ORGANIC THIOLS FROM SOLUTION ONTO GOLD [J].
BAIN, CD ;
TROUGHTON, EB ;
TAO, YT ;
EVALL, J ;
WHITESIDES, GM ;
NUZZO, RG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1989, 111 (01) :321-335