Intergranular Shielding for Ultrafine-Grained Mo-Doped Ni-Rich Li[Ni0.96Co0.04]O2 Cathode for Li-Ion Batteries with High Energy Density and Long Life

被引:25
作者
Park, Geon-Tae [1 ]
Kim, Su-Bin [1 ]
Namkoong, Been [1 ]
Ryu, Ji-Hyun [1 ]
Yoon, Jung-In [2 ]
Park, Nam-Yung [1 ]
Kim, Myoung-Chan [1 ]
Han, Sang-Mun [1 ]
Maglia, Filippo [3 ]
Sun, Yang-Kook [1 ,2 ]
机构
[1] Hanyang Univ, Dept Energy Engn, Seoul 04763, South Korea
[2] Hanyang Univ, Dept Battery Engn, Seoul 04763, South Korea
[3] BMW Grp, Petuelring 130, D-80788 Munich, Germany
关键词
Intergranular Protection; Long Cycle Life; Microstructure Engineering; Ni-Rich Cathodes; Ultrafine Grains; ELECTROCHEMICAL PERFORMANCE; ELECTROLYTE; STABILITY; CALENDAR;
D O I
10.1002/anie.202314480
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Deploying Ni-enriched (Ni >= 95 %) layered cathodes for high energy-density lithium-ion batteries (LIBs) requires resolving a series of technical challenges. Among them, the structural weaknesses of the cathode, vigorous reactivity of the labile Ni4+ ion species, gas evolution and associated cell swelling, and thermal instability issues are critical obstacles that must be solved. Herein, we propose an intuitive strategy that can effectively ameliorate the degradation of an extremely high-Ni-layered cathode, the construction of ultrafine-scale microstructure and subsequent intergranular shielding of grains. The formation of ultrafine grains in the Ni-enriched Li[Ni0.96Co0.04]O-2 (NC96) cathode, achieved by impeding particle coarsening during cathode calcination, noticeably improved the mechanical durability and electrochemical performance of the cathode. However, the buildup of the strain-resistant microstructure in Mo-doped NC96 concurrently increased the cathode-electrolyte contact area at the secondary particle surface, which adversely accelerated parasitic reactions with the electrolyte. The intergranular protection of the refined microstructure resolved the remaining chemical instability of the Mo-doped NC96 cathode by forming an F-induced coating layer, effectively alleviating structural degradation and gas generation, thereby extending the battery's lifespan. The proposed strategies synergistically improved the structural and chemical durability of the NC96 cathode, satisfying the energy density, life cycle performance, and safety requirements for next-generation LIBs.
引用
收藏
页数:9
相关论文
共 47 条
[1]  
[Anonymous], 2022, Global EV Outlook 2022
[2]   Formation of LiF-rich Cathode-Electrolyte Interphase by Electrolyte Reduction [J].
Bai, Panxing ;
Ji, Xiao ;
Zhang, Jiaxun ;
Zhang, Weiran ;
Hou, Singyuk ;
Su, Hai ;
Li, Mengjie ;
Deng, Tao ;
Cao, Longsheng ;
Liu, Sufu ;
He, Xinzi ;
Xu, Yunhua ;
Wang, Chunsheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (26)
[3]   There and Back Again-The Journey of LiNiO2 as a Cathode Active Material [J].
Bianchini, Matteo ;
Roca-Ayats, Maria ;
Hartmann, Pascal ;
Brezesinski, Torsten ;
Janek, Juergen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (31) :10434-10458
[4]   Impact of Dopants (Al, Mg, Mn, Co) on the Reactivity of LixNiO2 with the Electrolyte of Li-Ion Batteries [J].
Cormier, Marc M. E. ;
Zhang, Ning ;
Liu, Aaron ;
Li, Hongyang ;
Inglis, Julie ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (13) :A2826-A2833
[5]   Chemical, Structural, and Electronic Aspects of Formation and Degradation Behavior on Different Length Scales of Ni-Rich NCM and Li-Rich HE-NCM Cathode Materials in Li-Ion Batteries [J].
de Biasi, Lea ;
Schwarz, Bjoern ;
Brezesinski, Torsten ;
Hartmann, Pascal ;
Janek, Juergen ;
Ehrenberg, Helmut .
ADVANCED MATERIALS, 2019, 31 (26)
[6]   Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries [J].
Dose, Wesley M. ;
Temprano, Israel ;
Allen, Jennifer P. ;
Bjorklund, Erik ;
O'Keefe, Christopher A. ;
Li, Weiqun ;
Mehdi, B. Layla ;
Weatherup, Robert S. ;
De Volder, Michael F. L. ;
Grey, Clare P. .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (11) :13206-13222
[7]   Li2CO3 decomposition in Li-ion batteries induced by the electrochemical oxidation of the electrolyte and of electrolyte impurities [J].
Freiberg, Anna T. S. ;
Sicklinger, Johannes ;
Solchenbach, Sophie ;
Gasteiger, Hubert A. .
ELECTROCHIMICA ACTA, 2020, 346
[8]   Transition Metal Dissolution, Ion Migration, Electrocatalytic Reduction and Capacity Loss in Lithium-Ion Full Cells [J].
Gilbert, James A. ;
Shkrob, Ilya A. ;
Abraham, Daniel P. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (02) :A389-A399
[9]   The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium [J].
He, Mingfu ;
Guo, Rui ;
Hobold, Gustavo M. ;
Gao, Haining ;
Gallant, Betar M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (01) :73-79
[10]   Investigation of Changes in the Surface Structure of LixNi0.8Co0.15Al0.05O2 Cathode Materials Induced by the Initial Charge [J].
Hwang, Sooyeon ;
Chang, Wonyoung ;
Kim, Seung Min ;
Su, Dong ;
Kim, Dong Hyun ;
Lee, Jeong Yong ;
Chung, Kyung Yoon ;
Stach, Eric A. .
CHEMISTRY OF MATERIALS, 2014, 26 (02) :1084-1092