Disproportionation chemistry in K2PtCl4 visualized at atomic resolution using scanning transmission electron microscopy

被引:2
|
作者
Smith, Jacob G. [1 ,2 ,6 ]
Sawant, Kaustubh J. [3 ]
Zeng, Zhenhua [3 ]
Eldred, Tim B. [2 ,7 ]
Wu, Jianbo [1 ,4 ,5 ]
Greeley, Jeffrey P. [3 ]
Gao, Wenpei [1 ,2 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, Zhangjiang Inst Adv Study, Future Mat Innovat Ctr, Shanghai 200240, Peoples R China
[2] North Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA
[3] Purdue Univ, Davidson Sch Chem Engn, W Lafayette, IN 47907 USA
[4] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai, Peoples R China
[5] Shanghai Jiao Tong Univ, Ctr Hydrogen Sci, Shanghai 200240, Peoples R China
[6] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37830 USA
[7] Protochips Inc, 3800 Gateway Ctr Blvd Ste 306, Morrisville, NC 27560 USA
基金
美国国家科学基金会;
关键词
TOTAL-ENERGY CALCULATIONS; IN-SITU TEM; CHEMICAL-REACTIONS; RADIATION-DAMAGE; NANOCRYSTALS; STEM; NANOPARTICLES; IRRADIATION; MOLECULES; EVOLUTION;
D O I
10.1126/sciadv.adi0175
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The direct observation of a solid-state chemical reaction can reveal otherwise hidden mechanisms that control the reaction kinetics. However, probing the chemical bond breaking and formation at the molecular level remains challenging because of the insufficient spatial-temporal resolution and composition analysis of available characterization methods. Using atomic-resolution differential phase-contrast imaging in scanning transmission electron microscopy, we have visualized the decomposition chemistry of K2PtCl4 to identify its transient intermediate phases and their interfaces that characterize the chemical reduction process. The crystalline structure of K2PtCl4 is found to undergo a disproportionation reaction to form K2PtCl6, followed by gradual reduction to crystalline Pt metal and KCl. By directly imaging different Pt & horbar;Cl bond configurations and comparing them to models predicted via density functional theory calculations, a causal connection between the initial and final states of a chemical reaction is established, showcasing new opportunities to resolve reaction pathways through atomistic experimental visualization.
引用
收藏
页数:9
相关论文
共 45 条
  • [1] Interlacing in Atomic Resolution Scanning Transmission Electron Microscopy
    Peters, Jonathan J. P.
    Mullarkey, Tiarnan
    Gott, James A.
    Nelson, Elizabeth
    Jones, Lewys
    MICROSCOPY AND MICROANALYSIS, 2023, 29 (04) : 1373 - 1379
  • [2] New area detector for atomic-resolution scanning transmission electron microscopy
    Shibata, Naoya
    Kohno, Yuji
    Findlay, Scott D.
    Sawada, Hidetaka
    Kondo, Yukihito
    Ikuhara, Yuichi
    JOURNAL OF ELECTRON MICROSCOPY, 2010, 59 (06): : 473 - 479
  • [3] Enhanced light element imaging in atomic resolution scanning transmission electron microscopy
    Findlay, S. D.
    Kohno, Y.
    Cardamone, L. A.
    Ikuhara, Y.
    Shibata, N.
    ULTRAMICROSCOPY, 2014, 136 : 31 - 41
  • [4] Influence of plasmon excitations on atomic-resolution quantitative 4D scanning transmission electron microscopy
    Beyer, Andreas
    Krause, Florian F.
    Robert, Hoel L.
    Firoozabadi, Saleh
    Grieb, Tim
    Kuekelhan, Pirmin
    Heimes, Damien
    Schowalter, Marco
    Mueller-Caspary, Knut
    Rosenauer, Andreas
    Volz, Kerstin
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [5] Fourier images in coherent convergent beam electron diffraction and atomic resolution scanning transmission electron microscopy
    Zheng, Changlin
    Etheridge, Joanne
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2011, 67 : C694 - C695
  • [6] Metal-Graphene Interaction Studied via Atomic Resolution Scanning Transmission Electron Microscopy
    Zan, Recep
    Bangert, Ursa
    Ramasse, Quentin
    Novoselov, Konstantin S.
    NANO LETTERS, 2011, 11 (03) : 1087 - 1092
  • [7] Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy
    Van Aert, S.
    Verbeeck, J.
    Erni, R.
    Bals, S.
    Luysberg, M.
    Van Dyck, D.
    Van Tendeloo, G.
    ULTRAMICROSCOPY, 2009, 109 (10) : 1236 - 1244
  • [8] Phase Boundary Structure of LixFePO4 Cathode Material Revealed by Atomic-Resolution Scanning Transmission Electron Microscopy
    Nakamura, Akiho
    Furutsuki, Sho
    Nishimura, Shin-ichi
    Tohei, Tetsuya
    Sato, Yukio
    Shibata, Naoya
    Yamada, Atsuo
    Ikuhara, Yuichi
    CHEMISTRY OF MATERIALS, 2014, 26 (21) : 6178 - 6184
  • [9] Atomic resolution elemental mapping using energy-filtered imaging scanning transmission electron microscopy with chromatic aberration correction
    Krause, F. F.
    Rosenauer, A.
    Barthel, J.
    Mayer, J.
    Urban, K.
    Dunin-Borkowski, R. E.
    Brown, H. G.
    Forbes, B. D.
    Allen, L. J.
    ULTRAMICROSCOPY, 2017, 181 : 173 - 177
  • [10] Atomic-resolution analytical scanning transmission electron microscopy of topological insulators with a layered tetradymite structure
    Hickey, Danielle Reifsnyder
    Mkhoyan, K. Andre
    APL MATERIALS, 2020, 8 (07):