Finite Difference Time Domain Methods for the Dirac Equation Coupled with the Chern-Simons Gauge Field

被引:0
作者
Kim, Jeongho [1 ]
Moon, Bora [2 ,3 ]
机构
[1] Kyung Hee Univ, Dept Appl Math, 1732 Deogyeong Daero, Yongin 17104, Gyeonggi Do, South Korea
[2] Hanyang Univ, Dept Math, Seoul 04763, South Korea
[3] Hanyang Univ, Res Inst Nat Sci, Seoul 04763, South Korea
基金
新加坡国家研究基金会;
关键词
Chern-Simons-Dirac equations; Error estimate; Finite difference time domain method; NUMERICAL-METHODS; SCHEME; EFFICIENT;
D O I
10.1007/s10915-024-02473-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce finite difference time domain (FDTD) methods for solving the Dirac equation coupled with the Chern-Simons gauge field and provide their error estimates. To discretize the spinor equation, we utilize well-known FDTD schemes, including the Crank-Nicolson method, leap-frog method, and semi-implicit methods. On the other hand, to discretize the gauge equations, we mainly employ the Lorenz gauge condition and derive Crank-Nicolson or leap-frog type finite difference methods for the gauge equations. We establish the error estimates for the introduced FDTD methods and prove the second-order accuracy both in space and time. Numerical examples are also presented to validate the second-order convergence and illustrate the dependencies of the numerical solutions on the parameters or gauge conditions.
引用
收藏
页数:42
相关论文
共 39 条
[1]   LINEARIZED CRANK-NICHOLSON SCHEME FOR NONLINEAR DIRAC EQUATIONS [J].
ALVAREZ, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 99 (02) :348-350
[2]   The positive electron [J].
Anderson, CD .
PHYSICAL REVIEW, 1933, 43 (06) :491-494
[3]   Pseudospectral computational methods for the time-dependent Dirac equation in static curved spaces [J].
Antoine, Xavier ;
Fillion-Gourdeau, Francois ;
Lorinc, Emmanuel ;
MacLean, Steve .
JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 411
[4]   Long Time Error Analysis of Finite Difference Time Domain Methods for the Nonlinear Klein-Gordon Equation with Weak Nonlinearity [J].
Bao, Weizhu ;
Feng, Yue ;
Yi, Wenfan .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 26 (05) :1307-1334
[5]   Numerical Methods and Comparison for the Dirac Equation in the Nonrelativistic Limit Regime [J].
Bao, Weizhu ;
Cai, Yongyong ;
Jia, Xiaowei ;
Tang, Qinglin .
JOURNAL OF SCIENTIFIC COMPUTING, 2017, 71 (03) :1094-1134
[6]   Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime [J].
Bao WeiZhu ;
Cai YongYong ;
Jia XiaoWei ;
Yin Jia .
SCIENCE CHINA-MATHEMATICS, 2016, 59 (08) :1461-1494
[7]   An efficient and stable numerical method for the Maxwell-Dirac system [J].
Bao, WZ ;
Li, XG .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 199 (02) :663-687
[8]   Numerical approach to solve the time-dependent Dirac equation [J].
Braun, JW ;
Su, Q ;
Grobe, R .
PHYSICAL REVIEW A, 1999, 59 (01) :604-612
[9]   A convergent 2D finite-difference scheme for the Dirac-Poisson system and the simulation of graphene [J].
Brinkman, D. ;
Heitzinger, C. ;
Markowich, P. A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 257 :318-332
[10]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162