Probe conditioning via convolution neural network for scanning probe microscopy automation

被引:8
作者
Diao, Zhuo [1 ]
Hou, Linfeng [1 ]
Abe, Masayuki [1 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, 1-3 Machikaneyama, Toyonaka, Osaka 5600043, Japan
关键词
deep learning; scanning probe microscopy; scanning tunneling microscopy; image recognition; SPM tip; autonomous experiments; convolutional neural network; ATOM MANIPULATION;
D O I
10.35848/1882-0786/acecd6
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present an automation system for conditioning a scanning probe microscopy (SPM) probe into different states on a Si(111)-(7 x 7) surface at room temperature. Topography images representing multiple surface states and probe condition states divided into 11 categories and trained by a convolution neural network with an accuracy of 87% were used to estimate the effectiveness of the probe with an accuracy of 98%. We demonstrate the responsiveness of the method by experimentally reforming a probe into different conditions defined by preset categories. This system will promote advancements in autonomous SPM experiments at atomic scale and room temperature.
引用
收藏
页数:5
相关论文
共 33 条
[1]   RELIABLE TIP PREPARATION FOR HIGH-RESOLUTION SCANNING-TUNNELING-MICROSCOPY [J].
ALBREKTSEN, O ;
SALEMINK, HWM ;
MORCH, KA ;
THOLEN, AR .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1994, 12 (06) :3187-3190
[2]   Automated tip functionalization via machine learning in scanning probe microscopy [J].
Alldritt, Benjamin ;
Urtev, Fedor ;
Oinonen, Niko ;
Aapro, Markus ;
Kannala, Juho ;
Liljeroth, Peter ;
Foster, Adam S. .
COMPUTER PHYSICS COMMUNICATIONS, 2022, 273
[3]   Albumentations: Fast and Flexible Image Augmentations [J].
Buslaev, Alexander ;
Iglovikov, Vladimir I. ;
Khvedchenya, Eugene ;
Parinov, Alex ;
Druzhinin, Mikhail ;
Kalinin, Alexandr A. .
INFORMATION, 2020, 11 (02)
[4]   Deep learning based atomic defect detection framework for two-dimensional materials [J].
Chen, Fu-Xiang Rikudo ;
Lin, Chia-Yu ;
Siao, Hui-Ying ;
Jian, Cheng-Yuan ;
Yang, Yong-Cheng ;
Lin, Chun-Liang .
SCIENTIFIC DATA, 2023, 10 (01)
[5]   Precise atom manipulation through deep reinforcement learning [J].
Chen, I-Ju ;
Aapro, Markus ;
Kipnis, Abraham ;
Ilin, Alexander ;
Liljeroth, Peter ;
Foster, Adam S. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[6]   Automatic drift compensation for nanoscale imaging using feature point matching [J].
Diao, Zhuo ;
Ueda, Keiichi ;
Hou, Linfeng ;
Yamashita, Hayato ;
Custance, Oscar ;
Abe, Masayuki .
APPLIED PHYSICS LETTERS, 2023, 122 (12)
[7]   AN ATOMIC SWITCH REALIZED WITH THE SCANNING TUNNELING MICROSCOPE [J].
EIGLER, DM ;
LUTZ, CP ;
RUDGE, WE .
NATURE, 1991, 352 (6336) :600-603
[8]   Scanning tunneling state recognition with multi-class neural network ensembles [J].
Gordon, O. ;
D'Hondt, P. ;
Knijff, L. ;
Freeney, S. E. ;
Junqueira, F. ;
Moriarty, P. ;
Swart, I. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2019, 90 (10)
[9]   Mechanism of high-resolution STM/AFM imaging with functionalized tips [J].
Hapala, Prokop ;
Kichin, Georgy ;
Wagner, Christian ;
Tautz, F. Stefan ;
Temirov, Ruslan ;
Jelinek, Pavel .
PHYSICAL REVIEW B, 2014, 90 (08)
[10]   Binary atomic silicon logic [J].
Huff, Taleana ;
Labidi, Hatem ;
Rashidi, Mohammad ;
Livadaru, Lucian ;
Dienel, Thomas ;
Achal, Roshan ;
Vine, Wyatt ;
Pitters, Jason ;
Wolkow, Robert A. .
NATURE ELECTRONICS, 2018, 1 (12) :636-643