Experimental benchmark data for Monte Carlo simulated radiation effects of gold nanoparticles. Part II: comparison of measured and simulated electron spectra from gold nanofoils

被引:1
作者
Borbinha, Jorge [1 ]
Rosales, Liset de la Fuente [2 ,3 ,5 ]
Hepperle, Philine [2 ,3 ,4 ]
Nettelbeck, Heidi [2 ,3 ,6 ]
Baek, Woon Yong [2 ,3 ]
Di Maria, Salvatore [1 ]
Rabus, Hans [2 ,3 ]
机构
[1] Inst Super Tecn, Ctr Ciencias & Tecnol Nucl, Bobadela, Portugal
[2] Phys Tech Bundesanstalt, Braunschweig, Germany
[3] Phys Tech Bundesanstalt, Berlin, Germany
[4] Leibniz Univ Hannover, Inst Radioecol & Radiat Protect, Hannover, Germany
[5] IBA Dosimetry GmbH, Schwarzenbruck, Germany
[6] Australian Natl Univ, Acton, ACT, Australia
关键词
nanoscale radiation effects; hard X-ray photoemission; Monte Carlo simulations; RADIOTHERAPY; RADIOSENSITIZATION; MECHANISMS; YIELD;
D O I
10.1088/1402-4896/accb12
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Electron emission spectra of a thin gold foil after photon interaction were measured over the energy range between 50 eV and 9500 eV to provide reference data for Monte Carlo radiation-transport simulations. Experiments were performed with the HAXPES spectrometer at the PETRA III high-brilliance beamline P22 at DESY (Hamburg, Germany) for photon energies just below and above each of the gold L-edges, that is, at 11.9 keV, 12.0 keV, 13.7 keV, 13.8 keV, 14.3 keV, and 14.4 keV. The data were analyzed to obtain the absolute values of the particle radiance of the emitted electrons per incident photon flux. Simulations of the experiment were performed using the Penelope and Geant4 Monte Carlo radiation-transport codes. Comparison of the measured and simulated results shows good qualitative agreement. On an absolute scale, the experiments tend to produce higher electron radiance values at the lower photon energies studied as well as at the higher photon energies for electron energies below the energy of the Au L-3 photoelectron. This is attributed to the linear polarization of the photon beam in the experiments, something which is not considered in the simulation codes.
引用
收藏
页数:14
相关论文
共 45 条
[1]  
Agostinelli S., 2003, Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip., V506, P250, DOI DOI 10.1016/S0168-9002(03)01368-8
[2]   Geant4 developments and applications [J].
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Dubois, PA ;
Asai, M ;
Barrand, G ;
Capra, R ;
Chauvie, S ;
Chytracek, R ;
Cirrone, GAP ;
Cooperman, G ;
Cosmo, G ;
Cuttone, G ;
Daquino, GG ;
Donszelmann, M ;
Dressel, M ;
Folger, G ;
Foppiano, F ;
Generowicz, J ;
Grichine, V ;
Guatelli, S ;
Gumplinger, P ;
Heikkinen, A ;
Hrivnacova, I ;
Howard, A ;
Incerti, S ;
Ivanchenko, V ;
Johnson, T ;
Jones, F ;
Koi, T ;
Kokoulin, R ;
Kossov, M ;
Kurashige, H ;
Lara, V ;
Larsson, S ;
Lei, F ;
Link, O ;
Longo, F ;
Maire, M ;
Mantero, A ;
Mascialino, B ;
McLaren, I ;
Lorenzo, PM ;
Minamimoto, K ;
Murakami, K ;
Nieminen, P ;
Pandola, L ;
Parlati, S ;
Peralta, L .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (01) :270-278
[3]  
Allison J., 2016, NUCL INSTRUM METHODS, V835, P186, DOI DOI 10.1016/J.NIMA.2016.06.125
[4]  
Berger M.J., 2010, XCOM: Photon Cross Sections Database, DOI DOI 10.18434/T48G6X
[5]   Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit [J].
Bernal, M. A. ;
Bordage, M. C. ;
Brown, J. M. C. ;
Davidkova, M. ;
Delage, E. ;
El Bitar, Z. ;
Enger, S. A. ;
Francis, Z. ;
Guatelli, S. ;
Ivanchenko, V. N. ;
Karamitros, M. ;
Kyriakou, I. ;
Maigne, L. ;
Meylan, S. ;
Murakami, K. ;
Okada, S. ;
Payno, H. ;
Perrot, Y. ;
Petrovic, I. ;
Pham, Q. T. ;
Ristic-Fira, A. ;
Sasaki, T. ;
Stepan, V. ;
Tran, H. N. ;
Villagrasa, C. ;
Incerti, S. .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2015, 31 (08) :861-874
[6]   An investigation on the capabilities of the PENELOPE MC code in nanodosimetry [J].
Bernal, M. A. ;
Liendo, J. A. .
MEDICAL PHYSICS, 2009, 36 (02) :620-625
[7]   Gold nanoparticle mediated radiation response among key cell components of the tumour microenvironment for the advancement of cancer nanotechnology [J].
Bromma, Kyle ;
Cicon, Leah ;
Beckham, Wayne ;
Chithrani, Devika B. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[8]   Physical basis and biological mechanisms of gold nanoparticle radiosensitization [J].
Butterworth, Karl T. ;
McMahon, Stephen J. ;
Currell, Fred J. ;
Prise, Kevin M. .
NANOSCALE, 2012, 4 (16) :4830-4838
[9]  
Coulais A, 2019, ASTR SOC P, V523, P365
[10]   Radiosensitization by gold nanoparticles: Will they ever make it to the clinic? [J].
Cui, Lei ;
Her, Sohyoung ;
Borst, Gerben R. ;
Bristow, Robert G. ;
Jaffray, David A. ;
Allen, Christine .
RADIOTHERAPY AND ONCOLOGY, 2017, 124 (03) :344-356