Adaptive Context Exploration Network for Polyp Segmentation in Colonoscopy Images

被引:19
作者
Yue, Guanghui [1 ]
Li, Siying [1 ]
Zhou, Tianwei [2 ]
Wang, Miaohui [3 ]
Du, Jingfeng [4 ]
Jiang, Qiuping [5 ]
Gao, Wei [6 ,7 ]
Wang, Tianfu [1 ]
Lv, Jun [8 ]
机构
[1] Shenzhen Univ, Sch Biomed Engn, Hlth Sci Ctr, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Coll Management, Shenzhen 518060, Peoples R China
[3] Shenzhen Univ, Guangdong Key Lab Intelligent format Proc, Shenzhen 518060, Peoples R China
[4] Shenzhen Univ, Dept Gastroenterol & Hepatol, Gen Hosp, Shenzhen 518060, Peoples R China
[5] Ningbo Univ, Sch Informat Sci & Engn, Ningbo 315211, Peoples R China
[6] Peking Univ, Shenzhen Grad Sch, Sch Elect & Comp Engn, Shenzhen 518055, Peoples R China
[7] Peng Cheng Lab, Shenzhen 518066, Peoples R China
[8] Yantai Univ, Sch Comp & Control Engn, Yantai 264000, Peoples R China
来源
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE | 2023年 / 7卷 / 02期
基金
中国国家自然科学基金;
关键词
Image segmentation; Feature extraction; Colonoscopy; Shape; Decoding; Convolution; Annotations; Convolutional neural network; polyp segmentation; colonoscopy image; context exploration; COLORECTAL-CANCER; VALIDATION;
D O I
10.1109/TETCI.2022.3193677
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, automatic and accurate polyp segmentation has become an emerging yet challenging issue. Although convolutional neural networks (CNNs) exhibit a promising future modality to address this issue, most CNN-based methods highly require extensive labeled data. Unfortunately, there is a lack of large-scale public colorectal polyp segmentation datasets in the clinical community and academia. In this study, we construct a new benchmark dataset, which includes 2163 colonoscopy images and their pixel-wise annotations. Moreover, for intelligent polyp segmentation, we propose a novel adaptive context exploration network (ACENet). Our ACENet follows an encoder-decoder architecture and consists of two key modules, i.e., an attentional atrous spatial pyramid pooling (AASPP) module and an adaptive context extraction (ACE) module. The AASPP fuses semantic features from the encoder, and generates the global guidance information for the following decoder. The ACE captures multi-scale features and aggregates them by a branch-wise attention mechanism. Benefiting from these two modules, our ACENet is capable of adaptively exploring the context features to locate and detect the polyp regions effectively. Extensive experiments on the collected dataset and four publicly available datasets show that the proposed ACENet achieves superior performance on five evaluation metrics over three mainstream categories of the state-of-the-art methods.
引用
收藏
页码:487 / 499
页数:13
相关论文
共 56 条
[1]  
Ameling S., 2009, Bildverarbeitung fur die Medizin, P346
[2]  
[Anonymous], 2007, 2007 IEEE INT C IMAG, DOI DOI 10.1109/ICIP.2007.4379193
[3]   Polyp-Net: A Multimodel Fusion Network for Polyp Segmentation [J].
Banik, Debapriya ;
Roy, Kaushiki ;
Bhattacharjee, Debotosh ;
Nasipuri, Mita ;
Krejcar, Ondrej .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
[4]   WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians [J].
Bernal, Jorge ;
Javier Sanchez, F. ;
Fernandez-Esparrach, Gloria ;
Gil, Debora ;
Rodriguez, Cristina ;
Vilarino, Fernando .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2015, 43 :99-111
[5]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[6]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[7]   Multi-Crop Convolutional Neural Networks for Fast Lung Nodule Segmentation [J].
Chen, Quan ;
Xie, Wei ;
Zhou, Pan ;
Zheng, Chuansheng ;
Wu, Dapeng .
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2022, 6 (05) :1190-1200
[8]   Learnable Oriented-Derivative Network for Polyp Segmentation [J].
Cheng, Mengjun ;
Kong, Zishang ;
Song, Guoli ;
Tian, Yonghong ;
Liang, Yongsheng ;
Chen, Jie .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT I, 2021, 12901 :720-730
[9]   Deformable Convolutional Networks [J].
Dai, Jifeng ;
Qi, Haozhi ;
Xiong, Yuwen ;
Li, Yi ;
Zhang, Guodong ;
Hu, Han ;
Wei, Yichen .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :764-773
[10]  
Deng-Ping Fan, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12266), P263, DOI 10.1007/978-3-030-59725-2_26