In the Direction of an Artificial Intelligence-Enabled Monitoring Platform for Concrete Structures

被引:1
作者
Cosoli, Gloria [1 ]
Calcagni, Maria Teresa [1 ]
Salerno, Giovanni [1 ]
Mancini, Adriano [2 ]
Narang, Gagan [2 ]
Galdelli, Alessandro [2 ]
Mobili, Alessandra [3 ]
Tittarelli, Francesca [3 ,4 ]
Revel, Gian Marco [1 ]
机构
[1] Univ Politecn Marche, Dept Ind Engn & Math Sci, I-60131 Ancona, Italy
[2] Univ Politecn Marche, Dept Informat Engn, I-60131 Ancona, Italy
[3] Univ Politecn Marche, Dept Sci & Engn Matter Environm & Urban Planning, I-60131 Ancona, Italy
[4] Natl Res Council ISAC CNR, Inst Atmospher Sci & Climate, I-40129 Bologna, Italy
关键词
self-sensing concrete; monitoring; electrical impedance; monitoring platform; Artificial Intelligence; vision systems; crack detection; early warning;
D O I
10.3390/s24020572
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In a seismic context, it is fundamental to deploy distributed sensor networks for Structural Health Monitoring (SHM). Indeed, regularly gathering data from a structure/infrastructure gives insight on the structural health status, and Artificial Intelligence (AI) technologies can help in exploiting this information to generate early warnings useful for decision-making purposes. With a perspective of developing a remote monitoring platform for the built environment in a seismic context, the authors tested self-sensing concrete beams in loading tests, focusing on the measured electrical impedance. The formed cracks were objectively assessed through a vision-based system. Also, a comparative analysis of AI-based and statistical prediction methods, including Prophet, ARIMA, and SARIMAX, was conducted for predicting electrical impedance. Results show that the real part of electrical impedance is highly correlated with the applied load (Pearson's correlation coefficient > 0.9); hence, the piezoresistive ability of the manufactured specimens has been confirmed. Concerning prediction methods, the superiority of the Prophet model over statistical techniques was demonstrated (Mean Absolute Percentage Error, MAPE < 1.00%). Thus, the exploitation of electrical impedance sensors, vision-based systems, and AI technologies can be significant to enhance SHM and maintenance needs prediction in the built environment.
引用
收藏
页数:20
相关论文
共 50 条
[31]   Artificial intelligence-enabled evaluating for computer-aided drawings (AMCAD) [J].
Jianwu, Lisa Wang ;
Yew, Lim See ;
On, Lin Kok ;
Keong, Tan Chee ;
Sheng, Ricky Tan Yuan ;
Sani, Sairin Bin ;
Agnes, Tan Hwee Juan .
INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING EDUCATION, 2024, 52 (01) :3-31
[32]   Predictive Value of Artificial Intelligence-Enabled Electrocardiography in Patients With Takotsubo Cardiomyopathy [J].
Kanaji, Yoshihisa ;
Ozcan, Ilke ;
Tryon, David N. ;
Ahmad, Ali ;
Sara, Jaskanwal Deep Singh ;
Lewis, Brad ;
Friedman, Paul ;
Noseworthy, Peter A. ;
Lerman, Lilach O. ;
Kakuta, Tsunekazu ;
Attia, Zachi I. ;
Lerman, Amir .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2024, 13 (05)
[33]   Artificial Intelligence-Enabled Medical Device Standards: A Multidisciplinary Literature Review [J].
Lynch, Niamh St John ;
Loughran, Roisin ;
McHugh, Martin ;
McCaffrey, Fergal .
SYSTEMS, SOFTWARE AND SERVICES PROCESS IMPROVEMENT, EUROSPI 2024, PT I, 2024, 2179 :112-130
[34]   General Practitioners' Attitudes Toward Artificial Intelligence-Enabled Systems: Interview Study [J].
Buck, Christoph ;
Doctor, Eileen ;
Hennrich, Jasmin ;
Johnk, Jan ;
Eymann, Torsten .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2022, 24 (01)
[35]   Prediction of premature ventricular complex origins using artificial intelligence-enabled algorithms [J].
Nakamura, Tomofumi ;
Nagata, Yasutoshi ;
Nitta, Giichi ;
Okata, Shinichiro ;
Nagase, Masashi ;
Mitsui, Kentaro ;
Watanabe, Keita ;
Miyazaki, Ryoichi ;
Kaneko, Masakazu ;
Nagamine, Sho ;
Hara, Nobuhiro ;
Lee, Tetsumin ;
Nozato, Toshihiro ;
Ashikaga, Takashi ;
Goya, Masahiko ;
Sasano, Tetsuo .
CARDIOVASCULAR DIGITAL HEALTH JOURNAL, 2021, 2 (01) :76-83
[36]   Smart additive manufacturing: Current artificial intelligence-enabled methods and future perspectives [J].
Wang, YuanBin ;
Zheng, Pai ;
Peng, Tao ;
Yang, HuaYong ;
Zou, Jun .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2020, 63 (09) :1600-1611
[37]   Artificial Intelligence-Enabled Data Value Curation on AI-Data Commons [J].
Eom, Boyun ;
Lim, Sunhwan ;
Suh, Young-Ho ;
Woo, Sungpil ;
Park, Donghwan ;
Park, Chanwon .
12TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2021): BEYOND THE PANDEMIC ERA WITH ICT CONVERGENCE INNOVATION, 2021, :1316-1318
[38]   Performance and clinical utility of an artificial intelligence-enabled tool for pulmonary embolism detection [J].
Ayobi, Angela ;
Chang, Peter D. ;
Chow, Daniel S. ;
Weinberg, Brent D. ;
Tassy, Maxime ;
Franciosini, Angelo ;
Scudeler, Marlene ;
Quenet, Sarah ;
Avare, Christophe ;
Chaibi, Yasmina .
CLINICAL IMAGING, 2024, 113
[39]   Artificial intelligence-enabled digital transformation in elderly healthcare field: Scoping review [J].
Lee, Ching-Hung ;
Wang, Chang ;
Fan, Xiaojing ;
Li, Fan ;
Chen, Chun-Hsien .
ADVANCED ENGINEERING INFORMATICS, 2023, 55
[40]   A blockchain- and artificial intelligence-enabled smart IoT framework for sustainable city [J].
Ahmed, Imran ;
Zhang, Yulan ;
Jeon, Gwanggil ;
Lin, Wenmin ;
Khosravi, Mohammad R. ;
Qi, Lianyong .
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (09) :6493-6507