In the Direction of an Artificial Intelligence-Enabled Monitoring Platform for Concrete Structures

被引:1
|
作者
Cosoli, Gloria [1 ]
Calcagni, Maria Teresa [1 ]
Salerno, Giovanni [1 ]
Mancini, Adriano [2 ]
Narang, Gagan [2 ]
Galdelli, Alessandro [2 ]
Mobili, Alessandra [3 ]
Tittarelli, Francesca [3 ,4 ]
Revel, Gian Marco [1 ]
机构
[1] Univ Politecn Marche, Dept Ind Engn & Math Sci, I-60131 Ancona, Italy
[2] Univ Politecn Marche, Dept Informat Engn, I-60131 Ancona, Italy
[3] Univ Politecn Marche, Dept Sci & Engn Matter Environm & Urban Planning, I-60131 Ancona, Italy
[4] Natl Res Council ISAC CNR, Inst Atmospher Sci & Climate, I-40129 Bologna, Italy
关键词
self-sensing concrete; monitoring; electrical impedance; monitoring platform; Artificial Intelligence; vision systems; crack detection; early warning;
D O I
10.3390/s24020572
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In a seismic context, it is fundamental to deploy distributed sensor networks for Structural Health Monitoring (SHM). Indeed, regularly gathering data from a structure/infrastructure gives insight on the structural health status, and Artificial Intelligence (AI) technologies can help in exploiting this information to generate early warnings useful for decision-making purposes. With a perspective of developing a remote monitoring platform for the built environment in a seismic context, the authors tested self-sensing concrete beams in loading tests, focusing on the measured electrical impedance. The formed cracks were objectively assessed through a vision-based system. Also, a comparative analysis of AI-based and statistical prediction methods, including Prophet, ARIMA, and SARIMAX, was conducted for predicting electrical impedance. Results show that the real part of electrical impedance is highly correlated with the applied load (Pearson's correlation coefficient > 0.9); hence, the piezoresistive ability of the manufactured specimens has been confirmed. Concerning prediction methods, the superiority of the Prophet model over statistical techniques was demonstrated (Mean Absolute Percentage Error, MAPE < 1.00%). Thus, the exploitation of electrical impedance sensors, vision-based systems, and AI technologies can be significant to enhance SHM and maintenance needs prediction in the built environment.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Artificial Intelligence-Enabled Traffic Monitoring System
    Mandal, Vishal
    Mussah, Abdul Rashid
    Jin, Peng
    Adu-Gyamfi, Yaw
    SUSTAINABILITY, 2020, 12 (21) : 1 - 21
  • [2] Smart Infrastructures: Artificial Intelligence-Enabled Lifecycle Automation
    Fortuna, Carolina
    Yetgin, Halil
    Mohorcic, Mihael
    IEEE INDUSTRIAL ELECTRONICS MAGAZINE, 2023, 17 (02) : 37 - 47
  • [3] Artificial intelligence-enabled smart city construction
    Jiang, Yanxu
    Han, Linfei
    Gao, Yifang
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (18) : 19501 - 19521
  • [4] Artificial intelligence-enabled smart city construction
    Yanxu Jiang
    Linfei Han
    Yifang Gao
    The Journal of Supercomputing, 2022, 78 : 19501 - 19521
  • [5] Prediction of certainty in artificial intelligence-enabled electrocardiography
    Demolder, Anthony
    Nauwynck, Maxime
    De Pauw, Michel
    De Buyzere, Marc
    Duytschaever, Mattias
    Timmermans, Frank
    De Pooter, Jan
    JOURNAL OF ELECTROCARDIOLOGY, 2024, 83 : 71 - 79
  • [6] A BREAKTHROUGH IN ARTIFICIAL INTELLIGENCE-ENABLED MATERIALS DISCOVERY
    Bailey, Mary Page
    Chemical Engineering (United States), 2021, 128 (01):
  • [7] Clinical Evaluation of Artificial Intelligence-Enabled Interventions
    Hogg, H. D. Jeffry
    Martindale, Alexander P. L.
    Liu, Xiaoxuan
    Denniston, Alastair K.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (10)
  • [8] Clinical perspectives on the adoption of the artificial intelligence-enabled electrocardiogram
    Khurshid, Shaan
    JOURNAL OF ELECTROCARDIOLOGY, 2023, 81 : 142 - 145
  • [9] Privacy Preservation in Artificial Intelligence-Enabled Healthcare Analytics
    Li, Shancang
    Iqbal, Muddesar
    Bashir, Ali Kashif
    Wang, Xinheng
    HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES, 2025, 15 : 1 - 15
  • [10] Artificial Intelligence-Enabled ECG: a Modern Lens on an Old Technology
    Anthony H. Kashou
    Adam M. May
    Peter A. Noseworthy
    Current Cardiology Reports, 2020, 22