A D Band Low-Noise and High-Gain Receiver Front-End Adopting Gmax-Driven Active Mixer

被引:5
作者
Choi, Kyung-Sik [1 ]
Lee, Hokeun [2 ]
Yun, Byeonghun [2 ,3 ]
Lee, Sang-Gug [2 ]
机构
[1] Seoul Natl Univ Sci & Technol, Dept Elect, Seoul 01811, South Korea
[2] Korea Adv Inst Sci & Technol KAIST, Sch Elect Engn, Daejeon 34141, South Korea
[3] ASTAR, Inst Microelect, Singapore 138632, Singapore
关键词
Iron; Mixers; Array signal processing; Radio frequency; Noise measurement; Gain; Transistors; Active mixer; beamforming; CMOS; G(max); low-noise amplifier (LNA); receiver (RX); sub-terahertz (THz); WIDE-BAND; 65-NM CMOS; AMPLIFIER;
D O I
10.1109/TMTT.2024.3377612
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Phased-array systems are extensively utilized in wireless transmission and reception links operating at frequencies above 100 GHz to compensate for significant path loss. Regardless of beamforming architectures, the low-power implementation of a high-gain and low-noise receiver (RX) front-end (FE) plays a crucial role in large-scale RX arrays to maintain link margin. This article presents a 154 GHz low-power, high-gain, and low-noise CMOS RX FE adopting a proposed active mixer driven by a g(m) -stage based on a G(max ) -core. To ensure high-gain and low-noise characteristics, a two-stage low-noise amplifier (LNA) is implemented using the G(max ) gain boosting technique, while its first stage features a simultaneous noise-and input-matched G(max ) -core. The proposed active mixer consists of the G(max ) -based g(m) -stage and switching stages. The g(m) -stage driving the switching stage is realized using the G(max )-core to enhance the gain and stability efficiently. To further increase the RX gain, a conjugate matching network is introduced between the g(m)-and switching stages, which is verified by a comprehensive analysis compared to previously reported techniques. Implemented in a 65-nm CMOS process, the proposed RX FE achieves a peak conversion gain of 28.5 dB and a minimum noise figure (NF) of 7.5 dB while operating under a low dc power of only 21.8 mW.
引用
收藏
页码:5576 / 5587
页数:12
相关论文
共 44 条
[1]   A Fully-Differential 146.6-157.4 GHz LNA Utilizing Back Gate Control to Adjust Gain in 22 nm FDSOI [J].
Artz, Patrick J. ;
Scholz, Philipp ;
Mausolf, Thomas ;
Gerfers, Friedel .
2022 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS 2022), 2022, :611-614
[2]   A High-Gain mm-Wave Amplifier Design: An Analytical Approach to Power Gain Boosting [J].
Bameri, Hadi ;
Momeni, Omeed .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2017, 52 (02) :357-370
[3]   A 16TX/16RX 60 GHz 802.11ad Chipset With Single Coaxial Interface and Polarization Diversity [J].
Boers, Michael ;
Afshar, Bagher ;
Vassiliou, Iason ;
Sarkar, Saikat ;
Nicolson, Sean T. ;
Adabi, Ehsan ;
Perumana, Bevin George ;
Chalvatzis, Theodoros ;
Kavvadias, Spyros ;
Sen, Padmanava ;
Chan, Wei Liat ;
Yu, Alvin Hsing-Ting ;
Parsa, Ali ;
Nariman, Med ;
Yoon, Seunghwan ;
Besoli, Alfred Grau ;
Kyriazidou, Chryssoula A. ;
Zochios, Gerasimos ;
Castaneda, Jesus A. ;
Sowlati, Tirdad ;
Rofougaran, Maryam ;
Rofougaran, Ahmadreza .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2014, 49 (12) :3031-3045
[4]   A Fully Integrated 490-GHz CMOS Receiver Adopting Dual-Locking Receiver-Based FLL [J].
Choi, Kyung-Sik ;
Kim, Keun-Mok ;
Utomo, Dzuhri Radityo ;
Lee, In-Young ;
Lee, Sang-Gug .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2022, 57 (09) :2626-2639
[5]  
Choi KS, 2020, ISSCC DIG TECH PAP I, P452, DOI 10.1109/ISSCC19947.2020.9062916
[6]   A Fully Integrated 490-GHz CMOS Heterodyne Imager Adopting Second Subharmonic Resistive Mixer Structure [J].
Choi, Kyung-Sik ;
Utomo, Dzuhri Radityo ;
Lee, Sang-Gug .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2019, 29 (10) :673-676
[7]   A D-Band 16-Element Phased-Array Transceiver in 55-nm BiCMOS [J].
del Rio, David ;
Sevillano, Juan F. ;
Torres, Rolando ;
Irizar, Andoni ;
Roux, Pascal ;
Pirbazari, Mahmoud M. ;
Mazzanti, Andrea ;
Saily, Jussi ;
Lamminen, Antti ;
de Cos, Jesus ;
Luigi Frecassetti, Mario Giovanni ;
Moretto, Maurizio ;
Pallotta, Andrea ;
Ermolov, Vladimir .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2023, 71 (02) :854-869
[8]  
Elkhouly M., 2022, IEEE INT SOLID STATE, V65, P76, DOI DOI 10.1109/ISSCC42614.2022.9731626
[9]  
Elkhouly M, 2020, IEEE RAD FREQ INTEGR, P91, DOI [10.1109/rfic49505.2020.9218409, 10.1109/RFIC49505.2020.9218409]
[10]   A Broadband Direct Conversion Transmitter/Receiver at D-band Using CMOS 22nm FDSOI [J].
Farid, Ali A. ;
Simsek, Arda ;
Ahmed, Ahmed S. H. ;
Rodwell, Mark J. W. .
2019 IEEE RADIO FREQUENCY INTEGRATED CIRCUITS SYMPOSIUM (RFIC), 2019, :135-138