Investigating inorganic perovskite as absorber materials in perovskite solar cells: machine learning analysis and optimization

被引:6
作者
Shrivastav, Nikhil [1 ]
Madan, Jaya [1 ]
Hossain, M. Khalid [2 ]
Mohammed, Mustafa K. A. [3 ]
Samajdar, D. P. [4 ]
Bhattarai, Sagar [5 ]
Pandey, Rahul [1 ]
机构
[1] Chitkara Univ, Chitkara Univ Inst Engn & Technol, VLSI Ctr Excellence, Rajpura, Punjab, India
[2] Bangladesh Atom Energy Commiss, Atom Energy Res Estab, Inst Elect, Dhaka 1349, Bangladesh
[3] Univ Warith Al Anbiyaa, Karbala 56001, Iraq
[4] Indian Inst Informat Technol Design & Mfg, Dept ECE, Jabalpur 482005, Madhya Pradesh, India
[5] Technol Innovat & Dev Fdn, Indian Inst Technol Guwahati, Gauhati 781039, Assam, India
关键词
inorganic perovskite; solar cells; optimization; machine learning; neural network; random forest; XGBoost; BR; CL;
D O I
10.1088/1402-4896/ad2a2e
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This work investigates the potential of inorganic perovskites AgBiSCl2 and Al2Cu2Bi2S3Cl8 as absorber layers in perovskite solar cells, followed by the application of supervised machine learning models. Extensive exploration and optimization of device architectures FTO/SnO2/AgBiSCl2/Spiro-OMeTAD/Au and FTO/SnO2/Al2Cu2Bi2S3Cl8/Spiro-OMeTAD/Au are conducted, involving variations in absorber layer thickness (d), bulk defect density (Nt), and carrier mobility (mu n,p). The AgBiSCl2-based device achieves an optimized conversion efficiency of 10.06%, while the Al2Cu2Bi2S3Cl8-based device achieves 12.27%. To train different machine learning models, 1600 datasets are collected for each device, and Neural Networks (NN), Random Forests (RF), and XGBoost (XGB) models are employed. The performance parameters, evaluated using mean squared error (MSE) and high R-squared (R2) values, demonstrate that XGB performs the best, achieving an MSE of 0.210 and R2 of 97.1% for AgBiSCl2 and 0.671 and 90.6% for Al2Cu2Bi2S3Cl8. Additionally, the impact of each variable (d, Nt, and mu n,p) on the output is analyzed using Shapley Additive Explanations (SHAP) plots for each model. The results presented in this study pave the way for the advancement of perovskite material-based solar cells without relying on complex optoelectronic semiconducting equations and device simulators.
引用
收藏
页数:12
相关论文
共 35 条
[1]   Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction [J].
Al-Ashouri, Amran ;
Kohnen, Eike ;
Li, Bor ;
Magomedov, Artiom ;
Hempel, Hannes ;
Caprioglio, Pietro ;
Marquez, Jose A. ;
Vilches, Anna Belen Morales ;
Kasparavicius, Ernestas ;
Smith, Joel A. ;
Phung, Nga ;
Menzel, Dorothee ;
Grischek, Max ;
Kegelmann, Lukas ;
Skroblin, Dieter ;
Gollwitzer, Christian ;
Malinauskas, Tadas ;
Jost, Marko ;
Matic, Gasper ;
Rech, Bernd ;
Schlatmann, Rutger ;
Topic, Marko ;
Korte, Lars ;
Abate, Antonio ;
Stannowski, Bernd ;
Neher, Dieter ;
Stolterfoht, Martin ;
Unold, Thomas ;
Getautis, Vytautas ;
Albrecht, Steve .
SCIENCE, 2020, 370 (6522) :1300-+
[2]   Simulation and analysis of lead-free perovskite solar cells incorporating cerium oxide as electron transporting layer [J].
Al-Mousoi, Ali K. ;
Mohammed, Mustafa K. A. ;
Pandey, Rahul ;
Madan, Jaya ;
Dastan, Davoud ;
Ravi, G. ;
Sakthivel, P. ;
Anandha Babu, G. .
RSC ADVANCES, 2022, 12 (50) :32365-32373
[3]   A Lab-to-Fab Study toward Roll-to-Roll Fabrication of Reproducible Perovskite Solar Cells under Ambient Room Conditions [J].
Angmo, Dechan ;
DeLuca, Giovanni ;
Scully, Andrew D. ;
Chesman, Anthony S. R. ;
Seeber, Aaron ;
Zuo, Chuantian ;
Vak, Doojin ;
Bach, Udo ;
Gao, Mei .
CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (01)
[4]   High Performance and Stable All-Inorganic Metal Halide Perovskite-Based Photodetectors for Optical Communication Applications [J].
Bao, Chunxiong ;
Yang, Jie ;
Bai, Sai ;
Xu, Weidong ;
Yan, Zhibo ;
Xu, Qingyu ;
Liu, Junming ;
Zhang, Wenjing ;
Gao, Feng .
ADVANCED MATERIALS, 2018, 30 (38)
[5]   Efficient and stable perovskite solar cells based on blade-coated CH3NH3PbI3 thin films fabricated using ?green? solvents under ambient conditions [J].
Baral, Pramod ;
Zhang, Xinwen ;
Garden, Kelsey ;
Chakraborty, Nilave ;
Shen, Lening ;
Cao, Zikun ;
Gong, Xiong ;
Whittaker-Brooks, Luisa ;
Wang, He .
ORGANIC ELECTRONICS, 2023, 116
[6]   Metal Halide Perovskites for Solar-to-Chemical Fuel Conversion [J].
Chen, Jie ;
Dong, Chunwei ;
Idriss, Hicham ;
Mohammed, Omar F. ;
Bakr, Osman M. .
ADVANCED ENERGY MATERIALS, 2020, 10 (13)
[7]   Metal Halide Perovskite for next-generation optoelectronics: progresses and prospects [J].
Dong, He ;
Ran, Chenxin ;
Gao, Weiyin ;
Li, Mingjie ;
Xia, Yingdong ;
Huang, Wei .
ELIGHT, 2023, 3 (01)
[8]   Synthesis and crystal structures of four new bromo-chalcogenides:: MnSbS2Br, MnBiSe2Br and two allotropic forms of MnSbSe2Br.: Crystal chemistry of the MnPnQ2X family (Pn = Sb, Bi; Q = S, Se; X = Cl, Br, I) [J].
Doussier, Charlotte ;
Moelo, Yves ;
Leone, Philippe .
SOLID STATE SCIENCES, 2006, 8 (06) :652-659
[9]   Single-graded CIGS with narrow bandgap for tandem solar cells [J].
Feurer, Thomas ;
Bissig, Benjamin ;
Weiss, Thomas P. ;
Carron, Romain ;
Avancini, Enrico ;
Lockinger, Johannes ;
Buecheler, Stephan ;
Tiwari, Ayodhya N. .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2018, 19 (01) :263-270
[10]   Challenges in the development of metal-halide perovskite single crystal solar cells [J].
Ghasemi, Mehri ;
Yuan, Songyang ;
Fan, Jiandong ;
Jia, Baohua ;
Wen, Xiaoming .
JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (08) :3822-3848