Kernel-Based Models for System Analysis

被引:3
|
作者
van Waarde, Henk J. [1 ]
Sepulchre, Rodolphe [2 ]
机构
[1] Univ Groningen, Bernoulli Inst Math Comp Sci & Artificial Intellig, NL-9747 AG Groningen, Netherlands
[2] Univ Cambridge, Control Grp, Cambridge CB2 1TN, England
基金
欧洲研究理事会;
关键词
Identification for control; machine learning; modeling; nonlinear systems; system identification; DISSIPATIVE DYNAMICAL-SYSTEMS; LINEAR-SYSTEMS; IDENTIFICATION; STABILITY; DESIGN; SPACES;
D O I
10.1109/TAC.2022.3218944
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article introduces a computational framework to identify nonlinear input-output operators that fit a set of system trajectories while satisfying incremental integral quadratic constraints. The data fitting algorithm is thus regularized by suitable input-output properties required for system analysis and control design. This biased identification problem is shown to admit the tractable solution of a regularized least squares problem when formulated in a suitable reproducing kernel Hilbert space. The kernel-based framework is a departure from the prevailing state-space framework. It is motivated by fundamental limitations of nonlinear state-space models at combining the fitting requirements of data-based modeling with the input-output requirements of system analysis and physical modeling.
引用
收藏
页码:5317 / 5332
页数:16
相关论文
共 50 条
  • [11] Kernel-based learning of hierarchical multilabel classification models
    Rousu, Juho
    Saunders, Craig
    Szedmak, Sandor
    Shawe-Taylor, John
    JOURNAL OF MACHINE LEARNING RESEARCH, 2006, 7 : 1601 - 1626
  • [12] Kernel-based learning of hierarchical multilabel classification models
    Department of Computer Science, PO Box 68, FI-00014 Helsinki, Finland
    不详
    J. Mach. Learn. Res., 2006, (1601-1626):
  • [13] Kernel-Based Mixture of Experts Models For Linear Regression
    Santarcangelo, Joseph
    Zhang, Xiao-Ping
    2015 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2015, : 1526 - 1529
  • [14] On Robustness of Kernel-Based Regularized System Identification
    Khosravi, Mohammad
    Smith, Roy S.
    IFAC PAPERSONLINE, 2021, 54 (07): : 749 - 754
  • [15] A kernel-based approach to Hammerstein system identification
    Risuleo, Riccardo S.
    Bottegal, Giulio
    Hjalmarsson, Hakan
    IFAC PAPERSONLINE, 2015, 48 (28): : 1011 - 1016
  • [16] A new kernel-based approach for system identification
    De Nicolao, Giuseppe
    Pillonetto, Gianluigi
    2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 4510 - +
  • [17] Kernel-based models for prediction of cement compressive strength
    Verma, Mohit
    Thirumalaiselvi, A.
    Rajasankar, J.
    NEURAL COMPUTING & APPLICATIONS, 2017, 28 : S1083 - S1100
  • [18] Kernel-based estimation of the applicability domain of QSAR models
    Nikolas Fechner
    Georg Hinselmann
    A Jahn
    A Zell
    Journal of Cheminformatics, 2 (Suppl 1)
  • [19] Kernel-based models for prediction of cement compressive strength
    Mohit Verma
    A. Thirumalaiselvi
    J. Rajasankar
    Neural Computing and Applications, 2017, 28 : 1083 - 1100
  • [20] Kernel-based Sensitivity Analysis for (Excursion) Sets
    Fellmann, N.
    Blanchet-Scalliet, C.
    Helbert, C.
    Spagnol, A.
    Sinoquet, D.
    TECHNOMETRICS, 2024, 66 (04) : 575 - 587