Kernel-Based Models for System Analysis

被引:4
作者
van Waarde, Henk J. [1 ]
Sepulchre, Rodolphe [2 ]
机构
[1] Univ Groningen, Bernoulli Inst Math Comp Sci & Artificial Intellig, NL-9747 AG Groningen, Netherlands
[2] Univ Cambridge, Control Grp, Cambridge CB2 1TN, England
基金
欧洲研究理事会;
关键词
Identification for control; machine learning; modeling; nonlinear systems; system identification; DISSIPATIVE DYNAMICAL-SYSTEMS; LINEAR-SYSTEMS; IDENTIFICATION; STABILITY; DESIGN; SPACES;
D O I
10.1109/TAC.2022.3218944
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article introduces a computational framework to identify nonlinear input-output operators that fit a set of system trajectories while satisfying incremental integral quadratic constraints. The data fitting algorithm is thus regularized by suitable input-output properties required for system analysis and control design. This biased identification problem is shown to admit the tractable solution of a regularized least squares problem when formulated in a suitable reproducing kernel Hilbert space. The kernel-based framework is a departure from the prevailing state-space framework. It is motivated by fundamental limitations of nonlinear state-space models at combining the fitting requirements of data-based modeling with the input-output requirements of system analysis and physical modeling.
引用
收藏
页码:5317 / 5332
页数:16
相关论文
共 84 条
[21]  
Erichson N. B., 2021, PROC INT C LEARN REP
[22]   Robust Physical-World Attacks on Deep Learning Visual Classification [J].
Eykholt, Kevin ;
Evtimov, Ivan ;
Fernandes, Earlence ;
Li, Bo ;
Rahmati, Amir ;
Xiao, Chaowei ;
Prakash, Atul ;
Kohno, Tadayoshi ;
Song, Dawn .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :1625-1634
[23]   Subspace identification of bilinear systems subject to white inputs [J].
Favoreel, W ;
De Moor, B ;
Van Overschee, P .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (06) :1157-1165
[24]  
Fazlyab M, 2019, ADV NEUR IN, V32
[25]   Identification for control: From the early achievements to the revival of experiment design [J].
Gevers, M .
EUROPEAN JOURNAL OF CONTROL, 2005, 11 (4-5) :335-352
[26]  
Gevers M, 1995, ADAPTIVE SYSTEMS IN CONTROL AND SIGNAL PROCESSING 1995, P1
[27]   System Identification for Passive Linear Quantum Systems [J].
Guta, Madalin ;
Yamamoto, Naoki .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (04) :921-936
[28]   Learning dynamical systems from data: A simple cross-validation perspective, part I: Parametric kernel flows [J].
Hamzi, Boumediene ;
Owhadi, Houman .
PHYSICA D-NONLINEAR PHENOMENA, 2021, 421
[29]   A QUANTITATIVE DESCRIPTION OF MEMBRANE CURRENT AND ITS APPLICATION TO CONDUCTION AND EXCITATION IN NERVE [J].
HODGKIN, AL ;
HUXLEY, AF .
JOURNAL OF PHYSIOLOGY-LONDON, 1952, 117 (04) :500-544
[30]  
Isidori Alberto., 1985, NONLINEAR CONTROL SY