Kernel-Based Models for System Analysis

被引:3
|
作者
van Waarde, Henk J. [1 ]
Sepulchre, Rodolphe [2 ]
机构
[1] Univ Groningen, Bernoulli Inst Math Comp Sci & Artificial Intellig, NL-9747 AG Groningen, Netherlands
[2] Univ Cambridge, Control Grp, Cambridge CB2 1TN, England
基金
欧洲研究理事会;
关键词
Identification for control; machine learning; modeling; nonlinear systems; system identification; DISSIPATIVE DYNAMICAL-SYSTEMS; LINEAR-SYSTEMS; IDENTIFICATION; STABILITY; DESIGN; SPACES;
D O I
10.1109/TAC.2022.3218944
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article introduces a computational framework to identify nonlinear input-output operators that fit a set of system trajectories while satisfying incremental integral quadratic constraints. The data fitting algorithm is thus regularized by suitable input-output properties required for system analysis and control design. This biased identification problem is shown to admit the tractable solution of a regularized least squares problem when formulated in a suitable reproducing kernel Hilbert space. The kernel-based framework is a departure from the prevailing state-space framework. It is motivated by fundamental limitations of nonlinear state-space models at combining the fitting requirements of data-based modeling with the input-output requirements of system analysis and physical modeling.
引用
收藏
页码:5317 / 5332
页数:16
相关论文
共 50 条
  • [1] Kernel-based mixture models for classification
    Alejandro Murua
    Nicolas Wicker
    Computational Statistics, 2015, 30 : 317 - 344
  • [2] Kernel-based mixture models for classification
    Murua, Alejandro
    Wicker, Nicolas
    COMPUTATIONAL STATISTICS, 2015, 30 (02) : 317 - 344
  • [3] Kernel-based hierarchical structural component models for pathway analysis
    Hwangbo, Suhyun
    Lee, Sungyoung
    Lee, Seungyeoun
    Hwang, Heungsun
    Kim, Inyoung
    Park, Taesung
    BIOINFORMATICS, 2022, 38 (11) : 3078 - 3086
  • [4] Visual Interpretation of Kernel-Based Prediction Models
    Hansen, Katja
    Baehrens, David
    Schroeter, Timon
    Rupp, Matthias
    Mueller, Klaus-Robert
    MOLECULAR INFORMATICS, 2011, 30 (09) : 817 - 826
  • [5] Nonlocal effects in kernel-based Turing models
    Fang, Peng-Fei
    Yang, Fei-Ying
    APPLIED MATHEMATICS LETTERS, 2022, 134
  • [6] A kernel-based PEM estimator for forward models
    Fattore, Giulio
    Peruzzo, Marco
    Sartori, Giacomo
    Zorzi, Mattia
    IFAC PAPERSONLINE, 2024, 58 (15): : 31 - 36
  • [7] Interpretation and explanation of kernel-based prediction models
    Hansen, Katja
    Baehrens, David
    Schroeter, Timon
    Rupp, Matthias
    Mueller, Klaus-Robert
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [8] Kernel-Based Analysis of Massive Data
    Mhaskar, Hrushikesh N.
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2020, 6
  • [9] Kernel-based hierarchical cluster analysis
    Chen, Yong-Liang
    Li, Xue-Bin
    Jilin Daxue Xuebao (Diqiu Kexue Ban)/Journal of Jilin University (Earth Science Edition), 2010, 40 (05): : 1211 - 1216
  • [10] Kernel-based hierarchical structural component models for pathway analysis on survival phenotype
    Hwangbo, Suhyun
    Lee, Sungyoung
    Hosain, Md. Mozaffar
    Goo, Taewan
    Lee, Seungyeoun
    Kim, Inyoung
    Park, Taesung
    GENES & GENOMICS, 2024, 46 (12) : 1415 - 1421