Kernel-Based Models for System Analysis

被引:4
作者
van Waarde, Henk J. [1 ]
Sepulchre, Rodolphe [2 ]
机构
[1] Univ Groningen, Bernoulli Inst Math Comp Sci & Artificial Intellig, NL-9747 AG Groningen, Netherlands
[2] Univ Cambridge, Control Grp, Cambridge CB2 1TN, England
基金
欧洲研究理事会;
关键词
Identification for control; machine learning; modeling; nonlinear systems; system identification; DISSIPATIVE DYNAMICAL-SYSTEMS; LINEAR-SYSTEMS; IDENTIFICATION; STABILITY; DESIGN; SPACES;
D O I
10.1109/TAC.2022.3218944
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article introduces a computational framework to identify nonlinear input-output operators that fit a set of system trajectories while satisfying incremental integral quadratic constraints. The data fitting algorithm is thus regularized by suitable input-output properties required for system analysis and control design. This biased identification problem is shown to admit the tractable solution of a regularized least squares problem when formulated in a suitable reproducing kernel Hilbert space. The kernel-based framework is a departure from the prevailing state-space framework. It is motivated by fundamental limitations of nonlinear state-space models at combining the fitting requirements of data-based modeling with the input-output requirements of system analysis and physical modeling.
引用
收藏
页码:5317 / 5332
页数:16
相关论文
共 84 条
[1]  
Akhiezer N. I., 2013, ser. Dover Books on Mathematics, Vi
[2]   Kernels for Vector-Valued Functions: A Review [J].
Alvarez, Mauricio A. ;
Rosasco, Lorenzo ;
Lawrence, Neil D. .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2012, 4 (03) :195-266
[3]   GENERALIZED SYSTEM IDENTIFICATION WITH STABLE SPLINE KERNELS [J].
Aravkin, Aleksandr Y. ;
Burke, James, V ;
Pillonetto, Gianluigi .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (05) :B1419-B1443
[4]   THEORY OF REPRODUCING KERNELS [J].
ARONSZAJN, N .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 68 (MAY) :337-404
[5]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[6]   Kernel-based identification of non-causal systems with application to inverse model control [J].
Blanken, Lennart ;
Oomen, Tom .
AUTOMATICA, 2020, 114
[7]  
Bollobas B., 1999, Linear Analysis: An Introductory Course, V2nd
[8]   Cheapest open-loop identification for control [J].
Bombois, X ;
Scorletti, G ;
Gevers, A ;
Hildebrand, R ;
Van den Hof, P .
2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, :382-387
[9]  
Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401
[10]   Robust EM kernel-based methods for linear system identification [J].
Bottegal, Giulio ;
Aravkin, Aleksandr Y. ;
Hjalmarsson, Hakan ;
Pillonetto, Gianluigi .
AUTOMATICA, 2016, 67 :114-126