EXISTENCE OF OPTIMAL CONTROL FOR NONLINEAR FOKKER-PLANCK EQUATIONS IN L\bfone(RD).*

被引:2
作者
Barbu, Viorel [1 ,2 ]
机构
[1] Romanian Acad, Octav Mayer Inst Math, Iasi 700506, Romania
[2] AlI Cuza Univ, Iasi 700506, Romania
关键词
Fokker-Planck equation; McKean-Vlasov equation; mild solution; mean field; STOCHASTIC DIFFERENTIAL-EQUATIONS;
D O I
10.1137/22M1485243
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work is concerned with the existence of optimal controllers for the Bolza optimal control problem governed by the nonlinear Fokker-Planck equation in L1(Rd) with control input in the drift term. The solution to the control state system is a weak (mild) solution obtained from a vanishing viscosity approximation scheme. One obtains in particular the existence for the stochastic optimal control problem governed by McKean-Vlasov SDEs. For this problem, one proves the existence of a stochastic Markov optimal controller in feedback form.
引用
收藏
页码:1213 / 1230
页数:18
相关论文
共 26 条
[1]   Optimal Control of Stochastic Differential Equations via Fokker-Planck Equations [J].
Anita, Stefana-Lucia .
APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (SUPPL 2) :1555-1583
[2]  
Barbu V, 2010, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-4419-5542-5
[3]  
Barbu V., 2021, Semigroup Approach to Nonlinear Diffusion Equations
[4]  
Barbu V, 2022, Arxiv, DOI arXiv:2203.00122
[5]   THE CONTROLLABILITY OF FOKKER-PLANCK EQUATIONS WITH REFLECTING BOUNDARY CONDITIONS AND CONTROLLERS IN DIFFUSION TERM [J].
Barbu, Viorel .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (01) :709-726
[6]   Solutions for nonlinear Fokker-Planck equations with measures as initial data and McKean-Vlasov equations [J].
Barbu, Viorel ;
Roeckner, Michael .
JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (07)
[7]   Uniqueness for nonlinear Fokker-Planck equations and weak uniqueness for McKean-Vlasov SDEs [J].
Barbu, Viorel ;
Roeckner, Michael .
STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2021, 9 (03) :702-713
[8]   OPTIMAL CONTROL OF NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS ON HILBERT SPACES [J].
Barbu, Viorel ;
Rockner, Michael ;
Zhang, Deng .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2020, 58 (04) :2383-2410
[9]   FROM NONLINEAR FOKKER-PLANCK EQUATIONS TO SOLUTIONS OF DISTRIBUTION DEPENDENT SDE [J].
Barbu, Viorel ;
Roeckner, Michael .
ANNALS OF PROBABILITY, 2020, 48 (04) :1902-1920
[10]   OPTIMAL FEEDBACK CONTROLLERS FOR A STOCHASTIC DIFFERENTIAL EQUATION WITH REFLECTION [J].
Barbu, Viorel .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2020, 58 (02) :986-997