Mechanical Chaotic Duffing System with Magnetic Springs

被引:8
|
作者
Karimov, Artur [1 ]
Rybin, Vyacheslav [2 ]
Dautov, Albert [2 ]
Karimov, Timur [2 ]
Bobrova, Yulia [3 ]
Butusov, Denis [2 ]
机构
[1] St Petersburg Electrotech Univ LETI, Comp Aided Design Dept, 5 Professora Popova St, St Petersburg 197376, Russia
[2] St Petersburg Electrotech Univ LETI, Youth Res Inst, 5 Professora Popova St, St Petersburg 197376, Russia
[3] Petersburg Electrotech Univ LETI, Dept Biomed Engn, 5 Professora Popova St, St Petersburg 197376, Russia
基金
俄罗斯科学基金会;
关键词
Duffing equation; mechanical chaos; nonlinear oscillator; chaotic system; magnetic bearing; DESIGN; DYNAMICS;
D O I
10.3390/inventions8010019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Mechanical systems with inherent chaotic behavior are of notable practical interest due to their applicability in many fields of technology, from industrial mills and concrete mixers to microscopic micromechanical random bit generators. One of the most generic mathematical models for designing chaotic mechanical systems is the Duffing oscillator, which demonstrates chaotic motion under periodic excitation. The mechanical implementation of Duffing oscillator requires nonlinear springs, which can be implemented using different physical principles. In the current study, we propose the mechanical Duffing oscillator with magnetic springs as a low-wear, robust and easy-to-implement solution. We show by simulation and experimentation that the developed mechanical system performs chaotic oscillations in a wide range of parameters. The proposed design can be revised in a problem-specific manner and achieve many practical applications.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Merging crisis of chaotic saddle in a Duffing unilateral vibro-impact system
    Feng Jin-Qian
    Xu Wei
    ACTA PHYSICA SINICA, 2011, 60 (08)
  • [32] Lienard chaotic system based on Duffing and the Sinc function for weak signals detection
    Pancoatl-Bortolotti, P.
    Enriquez-Caldera, Rogerio A.
    Costa, Antonio H.
    Guerrero-Castellanos, Jose Fermi
    Tello-Bello, Maribel
    IEEE LATIN AMERICA TRANSACTIONS, 2022, 20 (08) : 2114 - 2121
  • [33] Image encryption utilizing computer generated hologram(CGH) and Duffing chaotic system
    Mousa, Salam K.
    Kafi, Dina Ahmed
    Jamal, Raied K.
    JOURNAL OF OPTICS-INDIA, 2024,
  • [34] The Analysis of Periodic Signal Detection Method Based on Duffing System Chaotic Dynamics
    Martynyuk, V. V.
    Havrylko, Ye. V.
    Boiko, J. M.
    Fedula, M. V.
    VISNYK NTUU KPI SERIIA-RADIOTEKHNIKA RADIOAPARATOBUDUVANNIA, 2018, (74): : 5 - 10
  • [35] Study on Chaotic Peculiarities of Magnetic-Mechanical Coupled System of Giant Magnetostrictive Actuator
    Yan, Hongbo
    Liu, Enzuo
    Zhao, Pengbo
    Liu, Pei
    Cao, Rui
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [36] Euler Arches and Duffing Springs of a Few Nanometers in Size
    Avetisov, V. A.
    Astakhov, A. M.
    Valov, A. F.
    Markina, A. A.
    Muratov, A. D.
    Petrovsky, V. S.
    Frolkina, M. A.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2023, 17 (03) : 533 - 549
  • [37] Euler Arches and Duffing Springs of a Few Nanometers in Size
    V. A. Avetisov
    A. M. Astakhov
    A. F. Valov
    A. A. Markina
    A. D. Muratov
    V. S. Petrovsky
    M. A. Frolkina
    Russian Journal of Physical Chemistry B, 2023, 17 : 533 - 549
  • [38] Mechanical analysis of Chen chaotic system
    Liang, Xiyin
    Qi, Guoyuan
    CHAOS SOLITONS & FRACTALS, 2017, 98 : 173 - 177
  • [39] A chaotic crisis between chaotic saddle and attractor in forced Duffing oscillators
    Hong, Ling
    Xu, Jianxue
    Communications in Nonlinear Science and Numerical Simulation, 2004, 9 (03) : 313 - 329
  • [40] HYBRID SYSTEM OF NANO-OPTICAL AND MECHANICAL SPRINGS
    Tian, Feng
    Deng, Jie
    Zou, Yongchao
    Chau, Fook Siong
    Zhou, Guangya
    2014 INTERNATIONAL CONFERENCE ON OPTICAL MEMS AND NANOPHOTONICS (OMN), 2014, : 189 - 190