Rapid identification of fish species by laser-induced breakdown spectroscopy and Raman spectroscopy coupled with machine learning methods

被引:52
作者
Ren, Lihui [1 ,3 ]
Tian, Ye [1 ]
Yang, Xiaoying [1 ]
Wang, Qi [1 ,3 ]
Wang, Leshan [1 ]
Geng, Xin [1 ]
Wang, Kaiqiang [2 ]
Du, Zengfeng [4 ]
Li, Ying [1 ]
Lin, Hong [2 ]
机构
[1] Ocean Univ China, Coll Phys & Optoelect Engn, Qingdao 266100, Peoples R China
[2] Ocean Univ China, Food Safety Lab, Qingdao 266003, Peoples R China
[3] Chinese Acad Sci, Qingdao Inst BioEnergy & Bioproc Technol, Single Cell Ctr, Qingdao 266101, Peoples R China
[4] Chinese Acad Sci, Key Lab Marine Geol & Environm, Qingdao 266071, Peoples R China
关键词
Fish species identification; laser -induced breakdown spectroscopy (LIBS); Raman spectroscopy; Machine learning; convolutional neural network (CNN); Data fusion; QUALITY ASSESSMENT; BOVINE MEAT; DATA FUSION; FOOD; CLASSIFICATION; QUANTIFICATION; ADULTERATION; CALCIUM; SAMPLES; FRAUDS;
D O I
10.1016/j.foodchem.2022.134043
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
There has been an increasing demand for the rapid verification of fish authenticity and the detection of adul-teration. In this work, we combined LIBS and Raman spectroscopy for the fish species identification for the first time. Two machine learning methods of SVM and CNN are used to establish the classification models based on the LIBS and Raman data obtained from 13 types of fish species. Data fusion strategies including low-level, mid-level and high-level fusions are used for the combination of LIBS and Raman data. It shows that all these data fusion strategies offer a significant improvement in fish classification compared with the individual LIBS or Raman data, and the CNN model works more powerfully than the SVM model. The low-level fusion CNN model provides a best classification accuracy of 98.2%, while the mid-level fusion involved with feature selection improves the computing efficiency and gains the interpretability of CNN.
引用
收藏
页数:9
相关论文
共 40 条
[1]   The potential of Raman spectroscopy for characterisation of the fatty acid unsaturation of salmon [J].
Afseth, Nils Kristian ;
Wold, Jens Petter ;
Segtnan, Vegard Herman .
ANALYTICA CHIMICA ACTA, 2006, 572 (01) :85-92
[2]   Data handling in data fusion: Methodologies and applications [J].
Azcarate, Silvana M. ;
Rios-Reina, Rocio ;
Amigo, Jose M. ;
Goicoechea, Ector C. .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2021, 143
[3]   Tea geographical origin explained by LIBS elemental profile combined to isotopic information [J].
Baskali-Bouregaa, Nadia ;
Milliand, Marie-Laure ;
Mauffrey, Sophie ;
Chabert, Elodie ;
Forrestier, Maureen ;
Gilon, Nicole .
TALANTA, 2020, 211
[4]   Identification of meat species by using laser-induced breakdown spectroscopy [J].
Bilge, Gonca ;
Velioglu, Hasan Murat ;
Sezer, Banu ;
Eseller, Kemal Efe ;
Boyaci, Ismail Hakki .
MEAT SCIENCE, 2016, 119 :118-122
[5]   Data fusion methodologies for food and beverage authentication and quality assessment - A review [J].
Borras, Eva ;
Ferre, Joan ;
Boque, Ricard ;
Mestres, Montserrat ;
Acena, Laura ;
Busto, Olga .
ANALYTICA CHIMICA ACTA, 2015, 891 :1-14
[6]   A novel method for discrimination of beef and horsemeat using Raman spectroscopy [J].
Boyaci, Ismail Hakki ;
Temiz, Havva Tumay ;
Uysal, Reyhan Selin ;
Velioglu, Hasan Murat ;
Yadegari, Reza Jafarzadeh ;
Rishkan, Mojtaba Mahmoudi .
FOOD CHEMISTRY, 2014, 148 :37-41
[7]   Accuracy and stability improvement for meat species identification using multiplicative scatter correction and laser-induced breakdown spectroscopy [J].
Chu, Yan Wu ;
Tang, Shi Song ;
Ma, Shi Xiang ;
Ma, Yu Yang ;
Ha, Zhong Qi ;
Gu, Yang Min ;
Gu, Lian Bo ;
Lu, Yong Feng ;
Zeng, Xiao Yan .
OPTICS EXPRESS, 2018, 26 (08) :10119-10127
[8]   Carotenes and carotenoids in natural biological samples: a Raman spectroscopic analysis [J].
de Oliveira, Vanessa E. ;
Castro, Harlem V. ;
Edwards, Howell G. M. ;
de Oliveira, Luiz Fernando C. .
JOURNAL OF RAMAN SPECTROSCOPY, 2010, 41 (06) :642-650
[9]   Deep learning in analytical chemistry [J].
Debus, Bruno ;
Parastar, Hadi ;
Harrington, Peter ;
Kirsanov, Dmitry .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2021, 145
[10]  
Ellis DI, 2015, ANAL METHODS-UK, V7, P9401, DOI [10.1039/C5AY02048D, 10.1039/c5ay02048d]