Heat pipe-based electric generator for waste heat harvesting

被引:1
作者
Wang, Yaofeng [1 ]
Guo, Hengyi [1 ]
Qin, Yaoyu [1 ]
Liao, Jiaqiang [1 ]
Feng, Zhenfei [1 ]
Li, Changzheng [1 ,2 ]
机构
[1] Guangxi Univ, Sch Mech Engn, Nanning 530004, Guangxi, Peoples R China
[2] Guangxi Univ, Ctr Nanoenergy Res, Sch Phys Sci & Technol, Nanning 530004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Waste heat harvesting; Thermal voltage; Multiphase interfacial movement; Heat pipe; THERMOELECTRIC PERFORMANCE; POWER; THERMOPOWER; CONVERSION; CYCLES;
D O I
10.1016/j.applthermaleng.2024.122482
中图分类号
O414.1 [热力学];
学科分类号
摘要
Converting widespread waste heat into electricity in an efficient and low-cost way for significant performance is challenging. Here, we demonstrate a novel heat pipe -based electric generator (HPEG) utilizing internal interfacial movement for effective thermal energy harvesting and power supply. A giant thermal voltage (analogous to the Seebeck coefficient in thermoelectric) up to -0.68 V K-1 and an open -circuit voltage of -24 V are achieved in a gravity -assisted heat pipe constructed from a polytetrafluoroethylene (PTFE) tube at a low working temperature of 333 K. The dependence of output performance on the input power, electrode position, electrode length, working angle, solution concentration, inner pressure, and electrode diameter were systematically investigated. As a proof of concept, we demonstrate that the device can light up a light -emitting diode (LED) and power a commercial liquid crystal display (LCD). Overall, benefiting from its simple design and good heat -toelectricity performance, the HPEG is proven to be a promising approach for waste heat harvesting.
引用
收藏
页数:7
相关论文
共 45 条
[1]   Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J].
Bell, Lon E. .
SCIENCE, 2008, 321 (5895) :1457-1461
[2]   Harvesting thermal energy via tube-based triboelectric nanogenerators within an oscillating heat pipe [J].
Chang, Chao ;
He, Xiaoyu ;
Han, Zhaoyang ;
Pei, Lilin ;
Wang, Zongyu ;
Ji, Yulong .
SUSTAINABLE ENERGY & FUELS, 2022, 6 (03) :693-699
[3]   Polymer Materials for High-Performance Triboelectric Nanogenerators [J].
Chen, Aihua ;
Zhang, Chen ;
Zhu, Guang ;
Wang, Zhong Lin .
ADVANCED SCIENCE, 2020, 7 (14)
[4]   Modulation Doping Enables Ultrahigh Power Factor and Thermoelectric ZT in n-Type Bi2Te2.7Se0.3 [J].
Chen, Cheng-Lung ;
Wang, Te-Hsien ;
Yu, Zih-Gin ;
Hutabalian, Yohanes ;
Vankayala, Ranganayakulu K. ;
Chen, Chao-Chih ;
Hsieh, Wen-Pin ;
Jeng, Horng-Tay ;
Wei, Da-Hua ;
Chen, Yang-Yuan .
ADVANCED SCIENCE, 2022, 9 (20)
[5]   A review of thermodynamic cycles and working fluids for the conversion of low-grade heat [J].
Chen, Huijuan ;
Goswami, D. Yogi ;
Stefanakos, Elias K. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (09) :3059-3067
[6]   Operational characteristics of the super-long gravity heat pipe for geothermal energy exploitation [J].
Chen, Juanwen ;
Huang, Wenbo ;
Cen, Jiwen ;
Li, Zhibin ;
Li, Feng ;
Li, Ang ;
Sun, Hongtao ;
Lin, Weijie ;
Ma, Qingshan ;
Jiang, Fangming .
APPLIED THERMAL ENGINEERING, 2024, 236
[7]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[8]  
Cotter T., 1965, THEORY HEAT PIPES
[9]   High-Performance Fluorinated Fused-Ring Electron Acceptor with 3D Stacking and Exciton/Charge Transport [J].
Dai, Shuixing ;
Zhou, Jiadong ;
Chandrabose, Sreelakshmi ;
Shi, Yanjun ;
Han, Guangchao ;
Chen, Kai ;
Xin, Jingming ;
Liu, Kuan ;
Chen, Zhenyu ;
Xie, Zengqi ;
Ma, Wei ;
Yi, Yuanping ;
Jiang, Lang ;
Hodgkiss, Justin M. ;
Zhan, Xiaowei .
ADVANCED MATERIALS, 2020, 32 (21)
[10]   Electrical power generation from moderate-temperature radiative thermal sources [J].
Davids, Paul S. ;
Kirsch, Jared ;
Starbuck, Andrew ;
Jarecki, Robert ;
Shank, Joshua ;
Peters, David .
SCIENCE, 2020, 367 (6484) :1341-+