Dynamical analysis of a new 5D hyperchaotic system

被引:8
作者
Li, Junhong [1 ]
Cui, Ning [1 ]
机构
[1] Hanshan Normal Univ, Sch Math & Stat, Chaozhou 521041, Guangdong, Peoples R China
关键词
hyperchaos; boundedness; lyapunov exponent spectrum; bifurcations; RABINOVICH SYSTEM; MOTION;
D O I
10.1088/1402-4896/acf41a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper reports a new five-dimensional (5D) autonomous hyperchaotic system that is obtained by introducing two linear controllers to the Rabinovich system. The dynamical behaviors, including the boundedness, dissipativity and invariance, existence and stability of nonzero equilibrium points are studied and analyzed. The existences of the hyperchaotic and chaotic attractors are numerically verified through analyzing phase trajectories, Lyapunov exponent spectrum, bifurcations and Poincare maps. The results indicate that the new 5D Rabinovich system can exhibit rich and complex dynamical behaviors. Finally, the existence of Hopf bifurcation, the stability and expression of the Hopf bifurcation are investigated by using the normal form theory and symbolic computations. Some cases are employed to test and verify the theoretical results.
引用
收藏
页数:17
相关论文
共 31 条
[1]  
Boichenko V.A., 2005, DIMENSION THEORY ORD
[2]   Secure speech coding communication using hyperchaotic key generators for AMR-WB codec [J].
Boumaraf, Messaouda ;
Merazka, Fatiha .
MULTIMEDIA SYSTEMS, 2021, 27 (02) :247-269
[3]  
Crane L, 2021, NEW SCI, V249, P15, DOI [10.1016/s0262-4079(21)00136-6, 10.1016/s0262-4079(21)00310-9, 10.1016/S0262-4079(21)00136-6, DOI 10.1016/S0262-4079(21)00310-9]
[4]   ROUTH-HURWITZ CRITERION IN THE EXAMINATION OF EIGENVALUES OF A SYSTEM OF NONLINEAR ORDINARY DIFFERENTIAL-EQUATIONS [J].
DEJESUS, EX ;
KAUFMAN, C .
PHYSICAL REVIEW A, 1987, 35 (12) :5288-5290
[5]  
Guckenheimer J., 1983, APPL MATH SCI, DOI [10.1007/978-1-4612-1140-2, DOI 10.1007/978-1-4612-1140-2]
[6]   A new fractional order hyperchaotic Rabinovich system and its dynamical behaviors [J].
He, Jin-Man ;
Chen, Fang-Qi .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2017, 95 :73-81
[7]  
Huang YM, 2018, INT J MICROW WIREL T, V10, P1019, DOI [10.1017/S1759078718000995, 10.1109/JPHOT.2017.2782841]
[8]   Controlling hyperchaotic Rabinovich system with single state controllers: Comparison of linear feedback, sliding mode, and passive control methods [J].
Kocamaz, Ugur Erkin ;
Uyaroglu, Yilmaz ;
Kizmaz, Hakan .
OPTIK, 2017, 130 :914-921
[9]  
Lefchetz S., 1963, Differential Equations: Geometric Theory
[10]   Two-Dimensional Memristive Hyperchaotic Maps and Application in Secure Communication [J].
Li, Houzhen ;
Hua, Zhongyun ;
Bao, Han ;
Zhu, Lei ;
Chen, Mo ;
Bao, Bocheng .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (10) :9931-9940