Natural cubic splines for the analysis of Alzheimer's clinical trials

被引:10
作者
Donohue, Michael C. [1 ]
Langford, Oliver [1 ]
Insel, Philip S. [2 ]
van Dyck, Christopher H. [3 ]
Petersen, Ronald C. [4 ]
Craft, Suzanne [5 ]
Sethuraman, Gopalan [1 ]
Raman, Rema [1 ]
Aisen, Paul S. [1 ]
机构
[1] Univ Southern Calif, Alzheimers Therapeut Res Inst, 9860 Mesa Rim Rd, San Diego, CA 92121 USA
[2] Univ Calif San Francisco, Dept Psychiat, San Francisco, CA USA
[3] Yale Sch Med, Alzheimers Dis Res Unit, New Haven, CT USA
[4] Mayo Clin, Dept Neurol, Rochester, MN USA
[5] Wake Forest Sch Med, Dept Internal Med Geriatr, Winston Salem, NC 27101 USA
基金
美国国家卫生研究院;
关键词
cLDA; constrained longitudinal data analysis; disease progression models; DPM; mixed model repeated measures; MMRM; natural cubic splines; MIXED-EFFECTS MODELS;
D O I
10.1002/pst.2285
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Mixed model repeated measures (MMRM) is the most common analysis approach used in clinical trials for Alzheimer's disease and other progressive diseases measured with continuous outcomes over time. The model treats time as a categorical variable, which allows an unconstrained estimate of the mean for each study visit in each randomized group. Categorizing time in this way can be problematic when assessments occur off-schedule, as including off-schedule visits can induce bias, and excluding them ignores valuable information and violates the intention to treat principle. This problem has been exacerbated by clinical trial visits which have been delayed due to the COVID19 pandemic. As an alternative to MMRM, we propose a constrained longitudinal data analysis with natural cubic splines that treats time as continuous and uses test version effects to model the mean over time. Compared to categorical-time models like MMRM and models that assume a proportional treatment effect, the spline model is shown to be more parsimonious and precise in real clinical trial datasets, and has better power and Type I error in a variety of simulation scenarios.
引用
收藏
页码:508 / 519
页数:12
相关论文
共 34 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]   On the practical application of mixed effects models for repeated measures to clinical trial data [J].
Andersen, Scott W. ;
Millen, Brian A. .
PHARMACEUTICAL STATISTICS, 2013, 12 (01) :7-16
[3]   The DIAN-TU Next Generation Alzheimer's prevention trial: Adaptive design and disease progression model [J].
Bateman, Randall J. ;
Benzinger, Tammie L. ;
Berry, Scott ;
Clifford, David B. ;
Duggan, Cynthia ;
Fagan, Anne M. ;
Fanning, Kathleen ;
Farlow, Martin R. ;
Hassenstab, Jason ;
McDade, Eric M. ;
Mills, Susan ;
Paumier, Katrina ;
Quintana, Melanie ;
Salloway, Stephen P. ;
Santacruz, Anna ;
Schneider, Lon S. ;
Wang, Guoqiao ;
Xiong, Chengjie .
ALZHEIMERS & DEMENTIA, 2017, 13 (01) :8-19
[4]   Fitting Linear Mixed-Effects Models Using lme4 [J].
Bates, Douglas ;
Maechler, Martin ;
Bolker, Benjamin M. ;
Walker, Steven C. .
JOURNAL OF STATISTICAL SOFTWARE, 2015, 67 (01) :1-48
[5]  
COX DR, 1972, J R STAT SOC B, V34, P187
[6]   Safety, Efficacy, and Feasibility of Intranasal Insulin for the Treatment of Mild Cognitive Impairment and Alzheimer Disease Dementia A Randomized Clinical Trial [J].
Craft, Suzanne ;
Raman, Rema ;
Chow, Tiffany W. ;
Rafii, Michael S. ;
Sun, Chung-Kai ;
Rissman, Robert A. ;
Donohue, Michael C. ;
Brewer, James B. ;
Jenkins, Cecily ;
Harless, Kelly ;
Gessert, Devon ;
Aisen, Paul S. .
JAMA NEUROLOGY, 2020, 77 (09) :1099-1109
[7]  
Diggle P. J., 2002, ANAL LONGITUDINAL DA, V2nd ed.
[8]   Initiation of symptomatic medication in Alzheimer's disease clinical trials: Hypothetical versus treatment policy approach [J].
Donohue, Michael C. ;
Model, Fabian ;
Delmar, Paul ;
Volye, Nicola ;
Liu-Seifert, Hong ;
Rafii, Michael S. ;
Aisen, Paul S. .
ALZHEIMERS & DEMENTIA, 2020, 16 (05) :797-803
[9]   The Preclinical Alzheimer Cognitive Composite Measuring Amyloid-Related Decline [J].
Donohue, Michael C. ;
Sperling, Reisa A. ;
Salmon, David P. ;
Rentz, Dorene M. ;
Raman, Rema ;
Thomas, Ronald G. ;
Weiner, Michael ;
Aisen, Paul S. .
JAMA NEUROLOGY, 2014, 71 (08) :961-970
[10]  
Harrell FE, 2015, SPRINGER SER STAT, DOI 10.1007/978-3-319-19425-7