Comprehensive characterization of the structure of Zr-based metallic glasses

被引:3
作者
Lahiri, Debdutta [1 ]
Krishna, K. V. Mani [2 ]
Verma, Ashok K. [1 ]
Modak, P. [1 ]
Vishwanadh, B. [2 ]
Chattopadhyay, Soma [3 ]
Shibata, Tomohiro [4 ]
Sharma, S. K. [5 ]
Sarkar, Sudip Kumar [2 ]
Clifton, Peter H. [6 ]
Biswas, A. [2 ]
Garg, Nandini [1 ]
K.Dey, G. [7 ]
机构
[1] Bhabha Atom Res Ctr, High Pressure & Synchrotron Radiat Phys Div, Mumbai 400085, India
[2] Bhabha Atom Res Ctr, Mat Sci Div, Mumbai 400085, India
[3] Elgin Community Coll, Phys Sci Dept, 1700 Spartan Dr, Elgin, IL 60123 USA
[4] Kennametal Inc, Mat Sci, 1600 Technol Way, Latrobe, PA 15650 USA
[5] Bhabha Atom Res Ctr, Radiochem Div, Mumbai 400085, India
[6] AMETEK Inc, 1100 Cassatt Rd, Berwyn, PA USA
[7] Bhabha Atom Res Ctr, Mat Grp, Mumbai 400085, India
关键词
MEDIUM-RANGE ORDER; RAY-ABSORPTION SPECTROSCOPY; FREE-VOLUME; ATOM-PROBE; FORMING ABILITY; SEMICONDUCTORS; ICOSAHEDRA; CLUSTER; MODEL;
D O I
10.1038/s41598-024-53509-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Structure of metallic glasses fascinates as the generic amorphous structural template for ubiquitous systems. Its specification necessitates determination of the complete hierarchical structure, starting from short-range-order (SRO) -> medium-range-order (MRO) -> bulk structure and free volume (FV) distribution. This link has largely remained elusive since previous investigations adopted one-technique-at-a-time approach, focusing on limited aspects of any one domain. Reconstruction of structure from experimental data inversion is non-unique for many of these techniques. As a result, complete and precise structural understanding of glass has not emerged yet. In this work, we demonstrate the first experimental pathway for reconstruction of the integrated structure, for Zr67Ni33\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Zr}}_{{{67}}} {\text{Ni}}_{{{33}}}$$\end{document} and Zr52Ti6Al10Cu18Ni14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Zr}}_{{{52}}} {\text{Ti}}_{{6}} {\text{Al}}_{{{10}}} {\text{Cu}}_{{{18}}} {\text{Ni}}_{{{14}}}$$\end{document} glasses. Our strategy engages diverse (x 7) multi-scale techniques [XAFS, 3D-APT, ABED/NBED, FEM, XRD, PAS, FHREM] on the same glass. This strategy complemented mutual limitations of techniques and corroborated common parameters to generate complete, self-consistent and precise parameters. Further, MRO domain size and inter-void separation were correlated to identify the presence of FV at MRO boundaries. This enabled the first experimental reconstruction of hierarchical subset: SRO -> MRO -> FV -> bulk structure. The first ever image of intermediate region between MRO domains emerged from this link. We clarify that determination of all subsets is not our objective; the essence and novelty of this work lies in directing the pathway towards finite solution, in the most logical and unambiguous way.
引用
收藏
页数:19
相关论文
共 85 条
  • [1] Chemical ordering around open-volume regions in bulk metallic glass Zr52.5Ti5Al10Cu17.9Ni14.6
    Asoka-Kumar, P
    Hartley, J
    Howell, R
    Sterne, PA
    Nieh, TG
    [J]. APPLIED PHYSICS LETTERS, 2000, 77 (13) : 1973 - 1975
  • [2] Temporal evolution of coherent precipitates in an aluminum alloy W319: A correlative anisotropic small angle X-ray scattering, transmission electron microscopy and atom-probe tomography study
    Biswas, Aniruddha
    Sen, Debasis
    Sarkar, Sudip Kumar
    Sarita
    Mazumder, S.
    Seidman, David N.
    [J]. ACTA MATERIALIA, 2016, 116 : 219 - 230
  • [3] Budhani R. C., 1982, Bulletin of Materials Science, V4, P549, DOI 10.1007/BF02824962
  • [4] Atom probe tomography today
    Cerezo, Alfred
    Clifton, Peter H.
    Galtrey, Mark J.
    Humphreys, Colin J.
    Kelly, Thomas F.
    Larson, David J.
    Lozano-Perez, Sergio
    Marquis, Emmanuelle A.
    Oliver, Rachel A.
    Sha, Gang
    Thompson, Keith
    Zandbergen, Mathijs
    Alvis, Roger L.
    [J]. MATERIALS TODAY, 2007, 10 (12) : 36 - 42
  • [5] A brief overview of bulk metallic glasses
    Chen, Mingwei
    [J]. NPG ASIA MATERIALS, 2011, 3 : 82 - 90
  • [6] Atomic Level Structure in Multicomponent Bulk Metallic Glass
    Cheng, Y. Q.
    Ma, E.
    Sheng, H. W.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (24)
  • [7] Atomic-level structure and structure-property relationship in metallic glasses
    Cheng, Y. Q.
    Ma, E.
    [J]. PROGRESS IN MATERIALS SCIENCE, 2011, 56 (04) : 379 - 473
  • [8] Medium range order of bulk metallic glasses determined by variable resolution fluctuation electron microscopy
    Deng, J. W.
    Du, K.
    Sui, M. L.
    [J]. MICRON, 2012, 43 (07) : 827 - 831
  • [9] Universal structural parameter to quantitatively predict metallic glass properties
    Ding, Jun
    Cheng, Yong-Qiang
    Sheng, Howard
    Asta, Mark
    Ritchie, Robert O.
    Ma, Evan
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [10] Second-Nearest-Neighbor Correlations from Connection of Atomic Packing Motifs in Metallic Glasses and Liquids
    Ding, Jun
    Ma, Evan
    Asta, Mark
    Ritchie, Robert O.
    [J]. SCIENTIFIC REPORTS, 2015, 5