Formation of solitons for the modified nonlinear Schrodinger equation

被引:6
作者
Akram, Ghazala [1 ]
Sadaf, Maasoomah [1 ]
Arshed, Saima [1 ]
Raza, Muhammad Zubair [1 ]
Alzaidi, Ahmed S. M. [2 ]
机构
[1] Univ Punjab, Dept Math, Lahore 54590, Pakistan
[2] Taif Univ, Coll Sci, Dept Math & Stat, POB 11099, Taif 21944, Saudi Arabia
来源
MODERN PHYSICS LETTERS B | 2024年 / 38卷 / 22期
关键词
Modified nonlinear Schrodinger equation; solitons; modified auxiliary equation method; (exp(-chi(epsilon)))-expansion method; exact solutions; VISIONS; KERR;
D O I
10.1142/S0217984924501896
中图分类号
O59 [应用物理学];
学科分类号
摘要
The study of modified nonlinear Schrodinger equation plays a significant role in the description of wave propagation through optical waveguides and rogue waves in ocean. The main aim of this work is to obtain solitons as well as other types of exact wave solutions to the modified nonlinear Schrodinger equation. The accurate traveling wave solutions are obtained using the (exp(-chi(epsilon)))-exponential expansion method and the modified auxiliary equation method. Consequently, soliton solutions and periodic wave solutions have been retrieved. The graphical illustrations of the results are provided for suitable values of the parameters involved in the solutions to explain the dynamical nature of the considered equation.
引用
收藏
页数:13
相关论文
共 15 条
[1]   The dynamical study of Biswas-Arshed equation via modified auxiliary equation method [J].
Akram, Ghazala ;
Sadaf, Maasoomah ;
Zainab, Iqra .
OPTIK, 2022, 255
[2]  
[Anonymous], 1968, J. App. Mech. Techn. Phys., DOI DOI 10.1007/BF00913182
[3]   New visions of the soliton solutions to the modified nonlinear Schrodinger equation [J].
Bekir, Ahmet ;
Zahran, Emad H. M. .
OPTIK, 2021, 232
[4]   Three distinct and impressive visions for the soliton solutions to the higher-order nonlinear Schrodinger equation [J].
Bekir, Ahmet ;
Zahran, Emad .
OPTIK, 2021, 228
[5]  
Bilal M., 2022, J OCEAN ENG SCI, V13
[6]   Quasi-stationary non-Kerr law optical solitons [J].
Biswas, A .
OPTICAL FIBER TECHNOLOGY, 2003, 9 (04) :224-259
[7]   Stationary solutions for nonlinear dispersive Schrodinger's equation [J].
Biswas, Anjan ;
Khalique, Chaudry Masood .
NONLINEAR DYNAMICS, 2011, 63 (04) :623-626
[8]  
Elboree MK, 2020, PRAMANA-J PHYS, V94, DOI 10.1007/s12043-020-02000-0
[9]   On the dynamics of soliton waves in a generalized nonlinear Schrodinger equation [J].
Hosseini, K. ;
Hincal, E. ;
Salahshour, S. ;
Mirzazadeh, M. ;
Dehingia, K. ;
Nath, B. J. .
OPTIK, 2023, 272
[10]   ON REDUCED EQUATIONS IN THE HAMILTONIAN THEORY OF WEAKLY NONLINEAR SURFACE-WAVES [J].
KRASITSKII, VP .
JOURNAL OF FLUID MECHANICS, 1994, 272 :1-20