On a Stochastic Fundamental Lemma and Its Use for Data-Driven Optimal Control

被引:30
作者
Pan, Guanru [1 ]
Ou, Ruchuan [1 ]
Faulwasser, Timm [1 ]
机构
[1] TU Dortmund Univ, Inst Energy Syst Energy Efficiency & Energy Econ, D-44227 Dortmund, Germany
关键词
Data-driven control; fundamental lemma; learning systems; model predictive control; optimal control; polynomial chaos; stochastic systems; uncertainty quantification; MODEL-PREDICTIVE CONTROL; RECEDING HORIZON CONTROL; POLYNOMIAL CHAOS; SYSTEMS;
D O I
10.1109/TAC.2022.3232442
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data-driven control based on the fundamental lemma by Willems et al. is frequently considered for deterministic linear time invariant (LTI) systems subject to measurement noise. However, besides measurement noise, stochastic disturbances might also directly affect the dynamics. In this article, we leverage polynomial chaos expansions to extend the deterministic fundamental lemma toward stochastic systems. This extension allows to predict future statistical distributions of the inputs and outputs for stochastic LTI systems in data-driven fashion, i.e., based on the knowledge of previously recorded input-output-disturbance data and of the disturbance distribution we perform data-driven uncertainty propagation. Finally, we analyze data-driven stochastic optimal control problems and we propose a conceptual framework for data-driven stochastic predictive control. Numerical examples illustrate the efficacy of the proposed concepts.
引用
收藏
页码:5922 / 5937
页数:16
相关论文
共 62 条
[1]   Region of attraction analysis of nonlinear stochastic systems using Polynomial Chaos Expansion [J].
Ahbe, Eva ;
Iannelli, Andrea ;
Smith, Roy S. .
AUTOMATICA, 2020, 122
[2]   Data-Based Receding Horizon Control of Linear Network Systems [J].
Allibhoy, Ahmed ;
Cortes, Jorge .
IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (04) :1207-1212
[3]   Data-Based System Analysis and Control of Flat Nonlinear Systems [J].
Alsalti, Mohammad ;
Berberich, Julian ;
Lopez, Victor G. ;
Allgoewer, Frank ;
Mueller, Matthias A. .
2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, :1484-1489
[4]   LTI Stochastic Processes: a Behavioral Perspective [J].
Baggio, Giacomo ;
Sepulchre, Rodolphe .
IFAC PAPERSONLINE, 2017, 50 (01) :2806-2811
[5]   Linear Tracking MPC for Nonlinear Systems-Part II: The Data-Driven Case [J].
Berberich, Julian ;
Koehler, Johannes ;
Mueller, Matthias A. ;
Allgoewer, Frank .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (09) :4406-4421
[6]   Data-driven model predictive control: closed-loop guarantees and experimental results [J].
Berberich, Julian ;
Koehler, Johannes ;
Mueller, Matthias A. ;
Allgoewer, Frank .
AT-AUTOMATISIERUNGSTECHNIK, 2021, 69 (07) :608-618
[7]   Data-Driven Model Predictive Control With Stability and Robustness Guarantees [J].
Berberich, Julian ;
Koehler, Johannes ;
Mueller, Matthias A. ;
Allgoewer, Frank .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (04) :1702-1717
[8]  
Berberich J, 2020, P AMER CONTR CONF, P1532, DOI [10.23919/ACC45564.2020.9147320, 10.23919/acc45564.2020.9147320]
[9]   Toward data-driven predictive control of multi-energy distribution systems [J].
Bilgic, Deborah ;
Koch, Alexander ;
Pan, Guanru ;
Faulwasser, Timm .
ELECTRIC POWER SYSTEMS RESEARCH, 2022, 212
[10]  
Bock H.G., 1984, P 9 IFAC WORLD C, P242, DOI [10.1016/S1474-6670(17)61205-9, DOI 10.1016/S1474-6670(17)61205-9]