Laser-Activatable In Situ Vaccine Enhances Cancer-Immunity Cycle

被引:16
作者
Wang, Zhenyu [1 ,2 ,3 ]
You, Tingting [1 ,4 ]
Su, Qianyi [1 ]
Deng, Wenjia [1 ]
Li, Jiabao [5 ]
Hu, Saixiang [1 ]
Shi, Shengjun [3 ]
Zou, Zhaowei [1 ]
Xiao, Jisheng [1 ,2 ]
Duan, Xiaopin [1 ]
机构
[1] Southern Med Univ, Zhujiang Hosp, Canc Res Inst, Sch Basic Med Sci,Dept Gen Surg, Guangzhou 510515, Peoples R China
[2] Southern Med Univ, Zhujiang Hosp, Heart Ctr, Guangdong Prov Biomed Engn Technol Res Ctr Cardiov, Guangzhou 510280, Peoples R China
[3] Southern Med Univ, Zhujiang Hosp, Dept Burns & Wound Repairing, Guangzhou 510280, Peoples R China
[4] Sun Yat sen Univ, Affiliated Hosp 5, Dept Blood Transfus, Zhuhai 519000, Peoples R China
[5] Southern Med Univ, Sch Pharmaceut Sci, Guangzhou 510515, Peoples R China
基金
中国国家自然科学基金;
关键词
caner-immunity cycle; immunotherapies; in situ vaccine; photodynamic therapy; photothermal therapy; IMMUNOGENIC CELL-DEATH; PATHWAY; GROWTH;
D O I
10.1002/adma.202307193
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The immune response in cancer reflects a series of carefully regulated events; however, current tumor immunotherapies typically address a single key aspect to enhance anti-tumor immunity. In the present study, a nanoplatform (Fe3O4@IR820@CpG)-based immunotherapy strategy that targets the multiple key steps in cancer-immunity cycle is developed: 1) promotes the release of tumor-derived proteins (TDPs), including tumor-associated antigens and pro-immunostimulatory factors), in addition to the direct killing effect, by photothermal (PTT) and photodynamic therapy (PDT); 2) captures the released TDPs and delivers them, together with CpG (a Toll-like receptor 9 agonist) to antigen-presenting cells (APCs) to promote antigen presentation and T cell activation; 3) enhances the tumor-killing ability of T cells by combining with anti-programmed death ligand 1 antibody (alpha-PD-L1), which collectively advances the outstanding of the anti-tumor effects on colorectal, liver and breast cancers. The broad-spectrum anti-tumor activity of Fe3O4@IR820@CpG with alpha-PD-L1 demonstrates that optimally manipulating anti-cancer immunity not singly but as a group provides promising clinical strategies. An in situ tumor vaccine is constructed to regulate the multiple events in the tumor immunity cycle: enhances antigen release by PTT and PDT; captures and delivers the released antigen, together with CpG, to APCs for antigen presentation; promotes T cell killing effect by combining with immune checkpoint inhibitor, thus significantly increasing the anti-tumor effectiveness on colorectal, liver and breast cancer.image
引用
收藏
页数:16
相关论文
共 56 条
[31]   Intravenous Delivery of Living Listeria monocytogenes Elicits Gasdmermin-Dependent Tumor Pyroptosis and Motivates Anti-Tumor Immune Response [J].
Liu, Yao ;
Lu, Yiping ;
Ning, Bo ;
Su, Xiaomin ;
Yang, Binru ;
Dong, Haiqing ;
Yin, Bo ;
Pang, Zhiqing ;
Shen, Shun .
ACS NANO, 2022, 16 (03) :4102-4115
[32]   Design of Light-Activated Nanoplatform through Boosting "Eat Me" Signals for Improved CD47-Blocking Immunotherapy [J].
Lu, Yan ;
Gong, Yonghua ;
Zhu, Xianghui ;
Dong, Xia ;
Zhu, Dunwan ;
Ma, Guilei .
ADVANCED HEALTHCARE MATERIALS, 2022, 11 (10)
[33]   Reactivation of dysfunctional dendritic cells by a stress-relieving nanosystem resets anti-tumor immune landscape [J].
Lu, Yichao ;
Shi, Yingying ;
Luo, Zhenyu ;
Guo, Xuemeng ;
Jiang, Mengshi ;
Li, Xiang ;
Zhang, Junlei ;
Zhu, Chunqi ;
Yin, Hang ;
Qin, Bing ;
Liu, Xu ;
Huang, Jiaxin ;
Du, Yongzhong ;
Luo, Lihua ;
You, Jian .
NANO TODAY, 2022, 43
[34]   Tissue-resident memory and circulating T cells are early responders to pre-surgical cancer immunotherapy [J].
Luoma, Adrienne M. ;
Suo, Shengbao ;
Wang, Yifan ;
Gunasti, Lauren ;
Porter, Caroline B. M. ;
Nabilsi, Nancy ;
Tadros, Jenny ;
Ferretti, Andrew P. ;
Liao, Sida ;
Gurer, Cagan ;
Chen, Yu-Hui ;
Criscitiello, Shana ;
Ricker, Cora A. ;
Dionne, Danielle ;
Rozenblatt-Rosen, Orit ;
Uppaluri, Ravindra ;
Haddad, Robert I. ;
Ashenberg, Orr ;
Regev, Aviv ;
Van Allen, Eliezer M. ;
MacBeath, Gavin ;
Schoenfeld, Jonathan D. ;
Wucherpfennig, Kai W. .
CELL, 2022, 185 (16) :2918-+
[35]   Spotlight on TAP and its vital role in antigen presentation and cross-presentation [J].
Mantel, Ian ;
Sadiq, Barzan A. A. ;
Blander, J. Magarian .
MOLECULAR IMMUNOLOGY, 2022, 142 :105-119
[36]   IL-6/STAT3 signaling in tumor cells restricts the expression of frameshift-derived neoantigens by SMG1 induction [J].
Meraviglia-Crivelli, Daniel ;
Villanueva, Helena ;
Zheleva, Angelina ;
Villalba-Esparza, Maria ;
Moreno, Beatriz ;
Menon, Ashwathi Puravankara ;
Calvo, Alfonso ;
Cebollero, Javier ;
Barainka, Martin ;
de los Mozos, Igor Ruiz ;
Huesa-Berral, Carlos ;
Pastor, Fernando .
MOLECULAR CANCER, 2022, 21 (01)
[37]  
Min YZ, 2017, NAT NANOTECHNOL, V12, P877, DOI [10.1038/nnano.2017.113, 10.1038/NNANO.2017.113]
[38]   Engineering the Bridge between Innate and Adaptive Immunity for Cancer Immunotherapy: Focus on γδ T and NK Cells [J].
Morandi, Fabio ;
Yazdanifar, Mahboubeh ;
Cocco, Claudia ;
Bertaina, Alice ;
Airoldi, Irma .
CELLS, 2020, 9 (08)
[39]   FcγR engagement reprograms neutrophils into antigen cross-presenting cells that elicit acquired anti-tumor immunity [J].
Mysore, Vijayashree ;
Cullere, Xavier ;
Mears, Joseph ;
Rosetti, Florencia ;
Okubo, Koshu ;
Liew, Pei X. ;
Zhang, Fan ;
Madera-Salcedo, Iris ;
Rosenbauer, Frank ;
Stone, Richard M. ;
Aster, Jon C. ;
von Andrian, Ulrich H. ;
Lichtman, Andrew H. ;
Raychaudhuri, Soumya ;
Mayadas, Tanya N. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[40]   Immune cells and their inflammatory mediators modify β cells and cause checkpoint inhibitor-induced diabetes [J].
Perdigoto, Ana Luisa ;
Deng, Songyan ;
Du, Katherine C. ;
Kuchroo, Manik ;
Burkhardt, Daniel B. ;
Tong, Alexander ;
Israel, Gary ;
Robert, Marie E. ;
Weisberg, Stuart P. ;
Kirkiles-Smith, Nancy ;
Stamatouli, Angeliki M. ;
Kluger, Harriet M. ;
Quandt, Zoe ;
Young, Arabella ;
Yang, Mei-Ling ;
Mamula, Mark J. ;
Pober, Jordan S. ;
Anderson, Mark S. ;
Krishnaswamy, Smita ;
Herold, Kevan C. .
JCI INSIGHT, 2022, 7 (17)