Quantum teleportation based on non-maximally entangled graph states

被引:6
作者
Ding, Yi [1 ]
Wei, Yuzheng [2 ]
Li, Zongyi [1 ]
Jiang, Min [1 ]
机构
[1] Soochow Univ, Sch Elect & Informat Engn, Suzhou 215006, Peoples R China
[2] Huzhou Univ, Sch Informat Engn, Huzhou 313000, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum teleportation; Graph state; Non-maximally entangled state; PROBABILISTIC TELEPORTATION; MULTIHOP TELEPORTATION; 2-QUBIT STATE; W STATE; COMPOSITE;
D O I
10.1007/s11128-023-04157-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In recent years, the development of graph states has opened a bright prospect for the generation of multipartite entangled states. However, due to the influences of noises in the surroundings, the obtained graph states may not be maximally entangled, which have been rarely explored previously. In this paper, we first consider how to generate one particular graph state which is named as the non-maximally entangled graph state. Next, we analyze the properties of the non-maximally entangled graph states and introduce two different kinds of graph states according to the entanglement of the non-maximally entangled graph states. Finally, we demonstrate how to teleport arbitrary unknown single-qubit state by using the non-maximally graph states. Compared with previous teleportation protocol, it demonstrates higher efficiency and lower operational complexity. We expect that our works can provide a theoretical instruction for the future study of the graph states.
引用
收藏
页数:21
相关论文
共 69 条
[41]   Advances in quantum cryptography [J].
Pirandola, S. ;
Andersen, U. L. ;
Banchi, L. ;
Berta, M. ;
Bunandar, D. ;
Colbeck, R. ;
Englund, D. ;
Gehring, T. ;
Lupo, C. ;
Ottaviani, C. ;
Pereira, J. L. ;
Razavi, M. ;
Shaari, J. Shamsul ;
Tomamichel, M. ;
Usenko, V. C. ;
Vallone, G. ;
Villoresi, P. ;
Wallden, P. .
ADVANCES IN OPTICS AND PHOTONICS, 2020, 12 (04) :1012-1236
[42]   Recovery from an eavesdropping attack on a qubit of a graph state [J].
Raina, Ankur ;
Garani, Shayan Srinivasa .
QUANTUM INFORMATION PROCESSING, 2019, 18 (09)
[43]   Universal teleportation via continuous-variable graph states [J].
Ren, Lijie ;
He, Guangqiang ;
Zeng, Guihua .
PHYSICAL REVIEW A, 2008, 78 (04)
[44]   Quantum state transfer between two photons with polarization and orbital angular momentum via quantum teleportation technology [J].
Ru, Shihao ;
An, Min ;
Yang, Yu ;
Qu, Rui ;
Wang, Feiran ;
Wang, Yunlong ;
Zhang, Pei ;
Li, Fuli .
PHYSICAL REVIEW A, 2021, 103 (05)
[45]   Nonthreshold quantum secret-sharing schemes in the graph-state formalism [J].
Sarvepalli, Pradeep .
PHYSICAL REVIEW A, 2012, 86 (04)
[46]   Faithful Multihop Two-Qubit Transmission Through GHZ-GHZ Channel [J].
Shuai, Shuangshuang ;
Chen, Na ;
Yan, Bin ;
Wang, Zhuopeng .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (07) :2488-2498
[47]   Hierarchical quantum communication [J].
Shukla, Chitra ;
Pathak, Anirban .
PHYSICS LETTERS A, 2013, 377 (19-20) :1337-1344
[48]   Design and experimental realization of an optimal scheme for teleportation of an n-qubit quantum state [J].
Sisodia, Mitali ;
Shukla, Abhishek ;
Thapliyal, Kishore ;
Pathak, Anirban .
QUANTUM INFORMATION PROCESSING, 2017, 16 (12)
[49]   Tight finite-key analysis for quantum cryptography [J].
Tomamichel, Marco ;
Lim, Charles Ci Wen ;
Gisin, Nicolas ;
Renner, Renato .
NATURE COMMUNICATIONS, 2012, 3
[50]   Graphical description of the action of local Clifford transformations on graph states [J].
Van den Nest, M ;
Dehaene, J ;
De Moor, B .
PHYSICAL REVIEW A, 2004, 69 (02) :7