VT3D: a visualization toolbox for 3D transcriptomic data

被引:10
作者
Guo, Lidong [1 ,2 ]
Li, Yao [2 ]
Qi, Yanwei [2 ]
Huang, Zhi [2 ]
Han, Kai [2 ]
Liu, Xiaobin [2 ]
Liu, Xin [1 ]
Xu, Mengyang [2 ,3 ]
Fan, Guangyi [2 ,3 ,4 ]
机构
[1] Univ Chinese Acad Sci, Coll Life Sci, Beijing 100049, Peoples R China
[2] BGI Shenzhen, BGI Qingdao, Qingdao 266555, Shandong, Peoples R China
[3] BGI Shenzhen, Shenzhen 518083, Guangdong, Peoples R China
[4] BGI Shenzhen, State Key Lab Agr Genom, Shenzhen 518083, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Spatially resolved transcriptomics; Stereo-seq; Spatial transcriptomics; MERFISH; 3D visualization; Data sharing; Virtual slice; EXPRESSION; ATLAS; CELL; SEQ;
D O I
10.1016/j.jgg.2023.04.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Data visualization empowers researchers to communicate their results that support scientific reasoning in an intuitive way. Three-dimension (3D) spatially resolved transcriptomic atlases constructed from multi-view and high-dimensional data have rapidly emerged as a powerful tool to unravel spatial gene expression patterns and cell type distribution in biological samples, revolutionizing the understanding of gene regulatory interactions and cell niches. However, limited accessible tools for data visualization impede the potential impact and application of this technology. Here we introduce VT3D, a visualization toolbox that allows users to explore 3D transcriptomic data, enabling gene expression projection to any 2D plane of interest, 2D virtual slice creation and visualization, and interactive 3D data browsing with surface model plots. In addition, it can either work on personal devices in standalone mode or be hosted as a web-based server. We apply VT3D to multiple datasets produced by the most popular techniques, including both sequencing-based approaches (Stereo-seq, spatial transcriptomics, and Slide-seq) and imaging-based approaches (MERFISH and STARMap), and successfully build a 3D atlas database that allows interactive data browsing. We demonstrate that VT3D bridges the gap between researchers and spatially resolved transcriptomics, thus accelerating related studies such as embryogenesis and organogenesis processes. The source code of VT3D is available at https://github.com/BGI-Qingdao/VT3D, and the modeled atlas database is available at http://www.bgiocean.com/vt3d_example. Copyright (c) 2023, The Authors. Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Limited and Science Press. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:713 / 719
页数:7
相关论文
共 39 条
[1]   A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing Human Heart [J].
Asp, Michaela ;
Giacomello, Stefania ;
Larsson, Ludvig ;
Wu, Chenglin ;
Furth, Daniel ;
Qian, Xiaoyan ;
Wardell, Eva ;
Custodio, Joaquin ;
Reimegard, Johan ;
Salmen, Fredrik ;
Osterholm, Cecilia ;
Stahl, Patrik L. ;
Sundstrom, Erik ;
Akesson, Elisabet ;
Bergmann, Olaf ;
Bienko, Magda ;
Mansson-Broberg, Agneta ;
Nilsson, Mats ;
Sylven, Christer ;
Lundeberg, Joakim .
CELL, 2019, 179 (07) :1647-+
[2]   AN EFFICIENT FLOOD-FILLING ALGORITHM [J].
BURTSEV, SV ;
KUZMIN, YP .
COMPUTERS & GRAPHICS, 1993, 17 (05) :549-561
[3]   Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays [J].
Chen, Ao ;
Liao, Sha ;
Cheng, Mengnan ;
Ma, Kailong ;
Wu, Liang ;
Lai, Yiwei ;
Qiu, Xiaojie ;
Yang, Jin ;
Xu, Jiangshan ;
Hao, Shijie ;
Wang, Xin ;
Lu, Huifang ;
Chen, Xi ;
Liu, Xing ;
Huang, Xin ;
Li, Zhao ;
Hong, Yan ;
Jiang, Yujia ;
Peng, Jian ;
Liu, Shuai ;
Shen, Mengzhe ;
Liu, Chuanyu ;
Li, Quanshui ;
Yuan, Yue ;
Wei, Xiaoyu ;
Zheng, Huiwen ;
Feng, Weimin ;
Wang, Zhifeng ;
Liu, Yang ;
Wang, Zhaohui ;
Yang, Yunzhi ;
Xiang, Haitao ;
Han, Lei ;
Qin, Baoming ;
Guo, Pengcheng ;
Lai, Guangyao ;
Munoz-Canoves, Pura ;
Maxwell, Patrick H. ;
Thiery, Jean Paul ;
Wu, Qing-Feng ;
Zhao, Fuxiang ;
Chen, Bichao ;
Li, Mei ;
Dai, Xi ;
Wang, Shuai ;
Kuang, Haoyan ;
Hui, Junhou ;
Wang, Liqun ;
Fei, Ji-Feng ;
Wang, Ou .
CELL, 2022, 185 (10) :1777-+
[4]  
Chen XY, 2023, bioRxiv, DOI [10.1101/2022.11.06.515380, 10.1101/2022.11.06.515380, DOI 10.1101/2022.11.06.515380]
[5]   Microscopic examination of spatial transcriptome using Seq-Scope [J].
Cho, Chun-Seok ;
Xi, Jingyue ;
Si, Yichen ;
Park, Sung-Rye ;
Hsu, Jer-En ;
Kim, Myungjin ;
Jun, Goo ;
Kang, Hyun Min ;
Lee, Jun Hee .
CELL, 2021, 184 (13) :3559-+
[6]   NBLAST: Rapid, Sensitive Comparison of Neuronal Structure and Construction of Neuron Family Databases [J].
Costa, Marta ;
Manton, James D. ;
Ostrovsky, Aaron D. ;
Prohaska, Steffen ;
Jefferis, Gregory S. X. E. .
NEURON, 2016, 91 (02) :293-311
[7]   Giotto: a toolbox for integrative analysis and visualization of spatial expression data [J].
Dries, Ruben ;
Zhu, Qian ;
Dong, Rui ;
Eng, Chee-Huat Linus ;
Li, Huipeng ;
Liu, Kan ;
Fu, Yuntian ;
Zhao, Tianxiao ;
Sarkar, Arpan ;
Bao, Feng ;
George, Rani E. ;
Pierson, Nico ;
Cai, Long ;
Yuan, Guo-Cheng .
GENOME BIOLOGY, 2021, 22 (01)
[8]   Computational Approaches and Challenges in Spatial Transcriptomics [J].
Fang, Shuangsang ;
Chen, Bichao ;
Zhang, Yong ;
Sun, Haixi ;
Liu, Longqi ;
Liu, Shiping ;
Li, Yuxiang ;
Xu, Xun .
GENOMICS PROTEOMICS & BIOINFORMATICS, 2023, 21 (01) :24-47
[9]   ST viewer: a tool for analysis and visualization of spatial transcriptomics datasets [J].
Fernandez Navarro, Jose ;
Lundeberg, Joakim ;
Stahl, Patrik L. .
BIOINFORMATICS, 2019, 35 (06) :1058-1060
[10]   Capturing complex 3D tissue physiology in vitro [J].
Griffith, LG ;
Swartz, MA .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2006, 7 (03) :211-224