iAMPCN: a deep-learning approach for identifying antimicrobial peptides and their functional activities

被引:43
作者
Xu, Jing [2 ,3 ]
Li, Fuyi [4 ]
Li, Chen [2 ,3 ]
Guo, Xudong [4 ]
Landersdorfer, Cornelia [5 ]
Shen, Hsin-Hui [6 ]
Peleg, Anton Y. [6 ,7 ,8 ,9 ]
Li, Jian [2 ,9 ]
Imoto, Seiya [10 ]
Yao, Jianhua [1 ,11 ]
Akutsu, Tatsuya [12 ]
Song, Jiangning [2 ,3 ,13 ]
机构
[1] Tencent AI Lab, Tencent, Shenzhen, Guangdong, Peoples R China
[2] Monash Univ, Biomed Discovery Inst, Melbourne, Vic 3800, Australia
[3] Monash Univ, Dept Biochem & Mol Biol, Melbourne, Vic 3800, Australia
[4] NorthwestA&F Univ, Coll Informat Engn, Xianyang, Shaanxi, Peoples R China
[5] Monash Univ, Monash Inst Pharmaceut Sci, Melbourne, Vic, Australia
[6] Monash Univ, Melbourne, Vic, Australia
[7] Alfred Hosp, Infect Dis & Microbiol, Melbourne, Vic, Australia
[8] Alfred Hosp, Dept Infect Dis, Melbourne, Vic, Australia
[9] Monash Univ, Dept Microbiol, Melbourne, Vic, Australia
[10] Univ Tokyo, Inst Med Sci, Human Genome Ctr, Tokyo, Japan
[11] Tencent AI Lab, Med Algorithm Grp, Shenzhen, Peoples R China
[12] Kyoto Univ, Inst Chem Res, Bioinformat Ctr, Uji 6110011, Japan
[13] Monash Univ, Monash Biomed Discovery Inst, Melbourne, Vic, Australia
基金
澳大利亚研究理事会; 美国国家卫生研究院; 英国医学研究理事会;
关键词
antimicrobial peptides; bioinformatics; sequence analysis; machine learning; deep learning; functional activities; IN-SILICO APPROACH; WEB SERVER; CD-HIT; SECONDARY STRUCTURE; PREDICTION; PROTEIN; MECHANISMS; ARGININE; DATABASE;
D O I
10.1093/bib/bbad240
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Antimicrobial peptides (AMPs) are short peptides that play crucial roles in diverse biological processes and have various functional activities against target organisms. Due to the abuse of chemical antibiotics and microbial pathogens' increasing resistance to antibiotics, AMPs have the potential to be alternatives to antibiotics. As such, the identification of AMPs has become a widely discussed topic. A variety of computational approaches have been developed to identify AMPs based on machine learning algorithms. However, most of them are not capable of predicting the functional activities of AMPs, and those predictors that can specify activities only focus on a few of them. In this study, we first surveyed 10 predictors that can identify AMPs and their functional activities in terms of the features they employed and the algorithms they utilized. Then, we constructed comprehensive AMP datasets and proposed a new deep learning-based framework, iAMPCN (identification of AMPs based on CNNs), to identify AMPs and their related 22 functional activities. Our experiments demonstrate that iAMPCN significantly improved the prediction performance of AMPs and their corresponding functional activities based on four types of sequence features. Benchmarking experiments on the independent test datasets showed that iAMPCN outperformed a number of state-of-the-art approaches for predicting AMPs and their functional activities. Furthermore, we analyzed the amino acid preferences of different AMP activities and evaluated the model on datasets of varying sequence redundancy thresholds. To facilitate the community-wide identification of AMPs and their corresponding functional types, we have made the source codes of iAMPCN publicly available at . We anticipate that iAMPCN can be explored as a valuable tool for identifying potential AMPs with specific functional activities for further experimental validation.
引用
收藏
页数:20
相关论文
共 117 条
[1]   AntiCP 2.0: an updated model for predicting anticancer peptides [J].
Agrawal, Piyush ;
Bhagat, Dhruv ;
Mahalwal, Manish ;
Sharma, Neelam ;
Raghava, Gajendra P. S. .
BRIEFINGS IN BIOINFORMATICS, 2021, 22 (03)
[2]   In Silico Approach for Prediction of Antifungal Peptides [J].
Agrawal, Piyush ;
Bhalla, Sherry ;
Chaudhary, Kumardeep ;
Kumar, Rajesh ;
Sharma, Meenu ;
Raghava, Gajendra P. S. .
FRONTIERS IN MICROBIOLOGY, 2018, 9
[3]   BIPEP: Sequence-based Prediction of Biofilm Inhibitory Peptides Using a Combination of NMR and Physicochemical Descriptors [J].
Atanaki, Fereshteh Fallah ;
Behrouzi, Saman ;
Ariaeenejad, Shohreh ;
Boroomand, Amin ;
Kavousi, Kaveh .
ACS OMEGA, 2020, 5 (13) :7290-7297
[4]   The universal protein resource (UniProt) [J].
Bairoch, Amos ;
Bougueleret, Lydie ;
Altairac, Severine ;
Amendolia, Valeria ;
Auchincloss, Andrea ;
Puy, Ghislaine Argoud ;
Axelsen, Kristian ;
Baratin, Delphine ;
Blatter, Marie-Claude ;
Boeckmann, Brigitte ;
Bollondi, Laurent ;
Boutet, Emmanuel ;
Quintaje, Silvia Braconi ;
Breuza, Lionel ;
Bridge, Alan ;
deCastro, Edouard ;
Coral, Danielle ;
Coudert, Elisabeth ;
Cusin, Isabelle ;
Dobrokhotov, Pavel ;
Dornevil, Dolnide ;
Duvaud, Severine ;
Estreicher, Anne ;
Famiglietti, Livia ;
Feuermann, Marc ;
Gehant, Sebastian ;
Farriol-Mathis, Nathalie ;
Ferro, Serenella ;
Gasteiger, Elisabeth ;
Gateau, Alain ;
Gerritsen, Vivienne ;
Gos, Arnaud ;
Gruaz-Gumowski, Nadine ;
Hinz, Ursula ;
Hulo, Chantal ;
Hulo, Nicolas ;
Ioannidis, Vassilios ;
Ivanyi, Ivan ;
James, Janet ;
Jain, Eric ;
Jimenez, Silvia ;
Jungo, Florence ;
Junker, Vivien ;
Keller, Guillaume ;
Lachaize, Corinne ;
Lane-Guermonprez, Lydie ;
Langendijk-Genevaux, Petra ;
Lara, Vicente ;
Lemercier, Philippe ;
Le Saux, Virginie .
NUCLEIC ACIDS RESEARCH, 2007, 35 :D193-D197
[5]   UniProt: a worldwide hub of protein knowledge [J].
Bateman, Alex ;
Martin, Maria-Jesus ;
Orchard, Sandra ;
Magrane, Michele ;
Alpi, Emanuele ;
Bely, Benoit ;
Bingley, Mark ;
Britto, Ramona ;
Bursteinas, Borisas ;
Busiello, Gianluca ;
Bye-A-Jee, Hema ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Castro, Leyla Garcia ;
Garmiri, Penelope ;
Georghiou, George ;
Gonzales, Daniel ;
Gonzales, Leonardo ;
Hatton-Ellis, Emma ;
Ignatchenko, Alexandr ;
Ishtiaq, Rizwan ;
Jokinen, Petteri ;
Joshi, Vishal ;
Jyothi, Dushyanth ;
Lopez, Rodrigo ;
Luo, Jie ;
Lussi, Yvonne ;
MacDougall, Alistair ;
Madeira, Fabio ;
Mahmoudy, Mahdi ;
Menchi, Manuela ;
Nightingale, Andrew ;
Onwubiko, Joseph ;
Palka, Barbara ;
Pichler, Klemens ;
Pundir, Sangya ;
Qi, Guoying ;
Raj, Shriya ;
Renaux, Alexandre ;
Lopez, Milagros Rodriguez ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Speretta, Elena ;
Turner, Edward ;
Tyagi, Nidhi ;
Vasudev, Preethi ;
Volynkin, Vladimir ;
Wardell, Tony .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D506-D515
[6]   UniProt: the Universal Protein Knowledgebase in 2023 [J].
Bateman, Alex ;
Martin, Maria-Jesus ;
Orchard, Sandra ;
Magrane, Michele ;
Ahmad, Shadab ;
Alpi, Emanuele ;
Bowler-Barnett, Emily H. ;
Britto, Ramona ;
Cukura, Austra ;
Denny, Paul ;
Dogan, Tunca ;
Ebenezer, ThankGod ;
Fan, Jun ;
Garmiri, Penelope ;
Gonzales, Leonardo Jose da Costa ;
Hatton-Ellis, Emma ;
Hussein, Abdulrahman ;
Ignatchenko, Alexandr ;
Insana, Giuseppe ;
Ishtiaq, Rizwan ;
Joshi, Vishal ;
Jyothi, Dushyanth ;
Kandasaamy, Swaathi ;
Lock, Antonia ;
Luciani, Aurelien ;
Lugaric, Marija ;
Luo, Jie ;
Lussi, Yvonne ;
MacDougall, Alistair ;
Madeira, Fabio ;
Mahmoudy, Mahdi ;
Mishra, Alok ;
Moulang, Katie ;
Nightingale, Andrew ;
Pundir, Sangya ;
Qi, Guoying ;
Raj, Shriya ;
Raposo, Pedro ;
Rice, Daniel L. ;
Saidi, Rabie ;
Santos, Rafael ;
Speretta, Elena ;
Stephenson, James ;
Totoo, Prabhat ;
Turner, Edward ;
Tyagi, Nidhi ;
Vasudev, Preethi ;
Warner, Kate ;
Watkins, Xavier ;
Zellner, Hermann .
NUCLEIC ACIDS RESEARCH, 2023, 51 (D1) :D523-D531
[7]   UniProt: a hub for protein information [J].
Bateman, Alex ;
Martin, Maria Jesus ;
O'Donovan, Claire ;
Magrane, Michele ;
Apweiler, Rolf ;
Alpi, Emanuele ;
Antunes, Ricardo ;
Arganiska, Joanna ;
Bely, Benoit ;
Bingley, Mark ;
Bonilla, Carlos ;
Britto, Ramona ;
Bursteinas, Borisas ;
Chavali, Gayatri ;
Cibrian-Uhalte, Elena ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Fazzini, Francesco ;
Gane, Paul ;
Cas-tro, Leyla Garcia ;
Garmiri, Penelope ;
Hatton-Ellis, Emma ;
Hieta, Reija ;
Huntley, Rachael ;
Legge, Duncan ;
Liu, Wudong ;
Luo, Jie ;
MacDougall, Alistair ;
Mutowo, Prudence ;
Nightin-gale, Andrew ;
Orchard, Sandra ;
Pichler, Klemens ;
Poggioli, Diego ;
Pundir, Sangya ;
Pureza, Luis ;
Qi, Guoying ;
Rosanoff, Steven ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Turner, Edward ;
Volynkin, Vladimir ;
Wardell, Tony ;
Watkins, Xavier ;
Zellner, Hermann ;
Cowley, Andrew ;
Figueira, Luis ;
Li, Weizhong ;
McWilliam, Hamish .
NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) :D204-D212
[8]   Molecular mechanisms of antibiotic resistance [J].
Blair, Jessica M. A. ;
Webber, Mark A. ;
Baylay, Alison J. ;
Ogbolu, David O. ;
Piddock, Laura J. V. .
NATURE REVIEWS MICROBIOLOGY, 2015, 13 (01) :42-51
[9]   mACPpred: A Support Vector Machine-Based Meta-Predictor for Identification of Anticancer Peptides [J].
Boopathi, Vinothini ;
Subramaniyam, Sathiyamoorthy ;
Malik, Adeel ;
Lee, Gwang ;
Manavalan, Balachandran ;
Yang, Deok-Chun .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (08)
[10]   Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action [J].
Chan, David I. ;
Prenner, Elmar J. ;
Vogel, Hans J. .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2006, 1758 (09) :1184-1202