Imaging crossing fibers in mouse, pig, monkey, and human brain using small-angle X-ray scattering

被引:4
作者
Georgiadis, Marios [1 ,2 ,3 ]
Menzel, Miriam [4 ,5 ]
Reuter, Jan A. [4 ]
Born, Donald E. [6 ]
Kovacevich, Sophie R. [1 ]
Alvarez, Dario [1 ]
Taghavi, Hossein Moein [1 ]
Schroeter, Aileen [2 ,3 ]
Rudin, Markus [2 ,3 ]
Gao, Zirui [2 ,3 ]
Guizar-Sicairos, Manuel [7 ]
Weiss, Thomas M. [8 ]
Axer, Markus [4 ]
Rajkovic, Ivan [8 ]
Zeineh, Michael M. [1 ]
机构
[1] Stanford Sch Med, Dept Radiol, Stanford, CA 94305 USA
[2] Swiss Fed Inst Technol, Inst Biomed Engn, Zurich, Switzerland
[3] Univ Zurich, Zurich, Switzerland
[4] Forschungszentrum Julich, Inst Neurosci & Med INM 1, D-52425 Julich, Germany
[5] Delft Univ Technol, Dept Imaging Phys, Delft, Netherlands
[6] Stanford Sch Med, Dept Pathol, Stanford, CA USA
[7] Paul Scherrer Inst, Photon Sci Div, Villigen, Switzerland
[8] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Stanford, CA USA
基金
美国国家卫生研究院;
关键词
Crossing fibers; Scanning small -angle X-ray scattering; (SAXS); Animal and human brain; Mouse; pig; vervet monkey brain; Human hippocampus; Imaging myelinated axons; Fiber orientation mapping; Diffusion MRI; HUMAN CONNECTOME; WHITE-MATTER; DIFFUSION; MODEL; HIPPOCAMPUS; MICROSCOPY; DISEASE;
D O I
10.1016/j.actbio.2023.04.029
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Myelinated axons (nerve fibers) efficiently transmit signals throughout the brain via action potentials. Multiple methods that are sensitive to axon orientations, from microscopy to magnetic resonance imag-ing, aim to reconstruct the brain's structural connectome. As billions of nerve fibers traverse the brain with various possible geometries at each point, resolving fiber crossings is necessary to generate accu-rate structural connectivity maps. However, doing so with specificity is a challenging task because signals originating from oriented fibers can be influenced by brain (micro)structures unrelated to myelinated axons.X-ray scattering can specifically probe myelinated axons due to the periodicity of the myelin sheath, which yields distinct peaks in the scattering pattern. Here, we show that small-angle X-ray scattering (SAXS) can be used to detect myelinated, axon-specific fiber crossings. We first demonstrate the capability using strips of human corpus callosum to create artificial double-and triple-crossing fiber geometries, and we then apply the method in mouse, pig, vervet monkey, and human brains. We compare results to polarized light imaging (3D-PLI), tracer experiments, and to outputs from diffusion MRI that sometimes fails to detect crossings. Given its specificity, capability of 3-dimensional sampling and high resolution, SAXS could serve as a ground truth for validating fiber orientations derived using diffusion MRI as well as microscopy-based methods. Statement of significance To study how the nerve fibers in our brain are interconnected, scientists need to visualize their trajecto-ries, which often cross one another. Here, we show the unique capacity of small-angle X-ray scattering (SAXS) to study these fiber crossings without use of labeling, taking advantage of SAXS's specificity to myelin -the insulating sheath that is wrapped around nerve fibers. We use SAXS to detect double and triple crossing fibers and unveil intricate crossings in mouse, pig, vervet monkey, and human brains. This non-destructive method can uncover complex fiber trajectories and validate other less specific imaging methods (e.g., MRI or microscopy), towards accurate mapping of neuronal connectivity in the animal and human brain.(c) 2023 Published by Elsevier Ltd on behalf of Acta Materialia Inc.
引用
收藏
页码:317 / 331
页数:15
相关论文
共 71 条
[1]   Evaluation of the accuracy and precision of the diffusion parameter EStImation with Gibbs and NoisE removal pipeline [J].
Ades-Aron, Benjamin ;
Veraart, Jelle ;
Kochunov, Peter ;
McGuire, Stephen ;
Sherman, Paul ;
Kellner, Elias ;
Novikov, Dmitry S. ;
Fieremans, Els .
NEUROIMAGE, 2018, 183 :532-543
[2]   Characterizing the human hippocampus in aging and Alzheimer's disease using a computational atlas derived from ex vivo MRI and histology [J].
Adler, Daniel H. ;
Wisse, Laura E. M. ;
Ittyerah, Ranjit ;
Pluta, John B. ;
Ding, Song-Lin ;
Xie, Long ;
Wang, Jiancong ;
Kadivar, Salmon ;
Robinson, John L. ;
Schuck, Theresa ;
Trojanowski, John Q. ;
Grossman, Murray ;
Detre, John A. ;
Elliott, Mark A. ;
Toledo, Jon B. ;
Liu, Weixia ;
Pickup, Stephen ;
Miller, Michael I. ;
Das, Sandhitsu R. ;
Wolk, David A. ;
Yushkevich, Paul A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (16) :4252-4257
[3]   Hippocampus in health and disease: An overview [J].
Anand, Kuljeet Singh ;
Dhikav, Vikas .
ANNALS OF INDIAN ACADEMY OF NEUROLOGY, 2012, 15 (04) :239-246
[4]   Neutron scattering in the biological sciences: progress and prospects [J].
Ashkar, Rana ;
Bilheux, Hassina Z. ;
Bordallo, Heliosa ;
Briber, Robert ;
Callaway, David J. E. ;
Cheng, Xiaolin ;
Chu, Xiang-Qiang ;
Curtis, Joseph E. ;
Dadmun, Mark ;
Fenimore, Paul ;
Fushman, David ;
Gabel, Frank ;
Gupta, Kushol ;
Herberle, Frederick ;
Heinrich, Frank ;
Hong, Liang ;
Katsaras, John ;
Kelman, Zvi ;
Kharlampieva, Eugenia ;
Kneller, Gerald R. ;
Kovalevsky, Andrey ;
Krueger, Susan ;
Langan, Paul ;
Lieberman, Raquel ;
Liu, Yun ;
Losche, Mathias ;
Lyman, Edward ;
Mao, Yimin ;
Marino, John ;
Mattos, Carla ;
Meilleur, Flora ;
Moody, Peter ;
Nickels, Jonathan D. ;
O'Dell, William B. ;
O'Neill, Hugh ;
Perez-Salas, Ursula ;
Peters, Judith ;
Petridis, Loukas ;
Sokolov, Alexei P. ;
Stanley, Christopher ;
Wagner, Norman ;
Weinrich, Michael ;
Weiss, Kevin ;
Wymore, Troy ;
Zhang, Yang ;
Smith, Jeremy C. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2018, 74 :1129-1168
[5]   A novel approach to the human connectome: Ultra-high resolution mapping of fiber tracts in the brain [J].
Axer, Markus ;
Amunts, Katrin ;
Graessel, David ;
Palm, Christoph ;
Dammers, Juergen ;
Axer, Hubertus ;
Pietrzyk, Uwe ;
Zilles, Karl .
NEUROIMAGE, 2011, 54 (02) :1091-1101
[6]   Equal Numbers of Neuronal and Nonneuronal Cells Make the Human Brain an Isometrically Scaled-Up Primate Brain [J].
Azevedo, Frederico A. C. ;
Carvalho, Ludmila R. B. ;
Grinberg, Lea T. ;
Farfel, Jose Marcelo ;
Ferretti, Renata E. L. ;
Leite, Renata E. P. ;
Jacob Filho, Wilson ;
Lent, Roberto ;
Herculano-Houzel, Suzana .
JOURNAL OF COMPARATIVE NEUROLOGY, 2009, 513 (05) :532-541
[7]   The basis of anisotropic water diffusion in the nervous system - a technical review [J].
Beaulieu, C .
NMR IN BIOMEDICINE, 2002, 15 (7-8) :435-455
[8]  
Benn R.A., 2020, BIORXIV
[9]   APOE4 impairs myelination via cholesterol dysregulation in oligodendrocytes [J].
Blanchard, Joel W. ;
Akay, Leyla Anne ;
Davila-Velderrain, Jose ;
von Maydell, Djuna ;
Mathys, Hansruedi ;
Davidson, Shawn M. ;
Effenberger, Audrey ;
Chen, Chih-Yu ;
Maner-Smith, Kristal ;
Hajjar, Ihab ;
Ortlund, Eric A. ;
Bula, Michael ;
Agbas, Emre ;
Ng, Ayesha ;
Jiang, Xueqiao ;
Kahn, Martin ;
Blanco-Duque, Cristina ;
Lavoie, Nicolas ;
Liu, Liwang ;
Reyes, Ricardo ;
Lin, Yuan-Ta ;
Ko, Tak ;
R'Bibo, Lea ;
Ralvenius, William T. ;
Bennett, David A. ;
Cam, Hugh P. ;
Kellis, Manolis ;
Tsai, Li-Huei .
NATURE, 2022, 611 (7937) :769-+
[10]  
Chung K, 2013, NAT METHODS, V10, P508, DOI [10.1038/nmeth.2481, 10.1038/NMETH.2481]