Advanced nanoengineering strategies endow high-performance layered transition-metal oxide cathodes for sodium-ion batteries

被引:32
|
作者
Xiao, Jun [1 ]
Xiao, Yang [1 ]
Li, Jiayi [1 ]
Gong, Cheng [1 ]
Nie, Xinming [3 ,4 ]
Gao, Hong [1 ,2 ]
Sun, Bing [2 ]
Liu, Hao [1 ,2 ]
Wang, Guoxiu [2 ,5 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, Joint Int Lab Environm & Energy Frontier Mat, Shanghai, Peoples R China
[2] Univ Technol Sydney, Fac Sci, Ctr Clean Energy Technol, Sch Math & Phys Sci, Broadway, Sydney, NSW, Australia
[3] Jiangsu Normal Univ, Sch Phys & Elect Engn, Xuzhou, Jiangsu, Peoples R China
[4] Jiangsu Normal Univ, Sch Phys & Elect Engn, Xuzhou 221116, Jiangsu, Peoples R China
[5] Univ Technol Sydney, Fac Sci, Ctr Clean Energy Technol, Broadway, Sydney, NSW 2007, Australia
来源
SMARTMAT | 2023年 / 4卷 / 05期
基金
澳大利亚研究理事会;
关键词
cathode materials; layered transition-metal oxides; modification strategies; sodium-ion batteries; HIGH-ENERGY CATHODE; RATIONAL DESIGN; ANIONIC REDOX; SUBSTITUTION; OXIDATION; CAPACITY; STABILIZATION; STABILITY; COMPOSITE; STORAGE;
D O I
10.1002/smm2.1211
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Considering the abundance and low price of sodium, sodium-ion batteries (SIBs) have shown great potential as an alternative to existing lithium-based batteries in large-scale energy storage systems, including electric automobiles and smart grids. Cathode materials, which largely decide the cost and the electrochemical performance of the full SIBs, have been extensively studied. Among the reported cathodes, layered transition-metal oxides (LTMOs) are regarded as the most extremely promising candidates for the commercial application of the SIBs owing to their high specific capacity, superior redox potential, and suitable scalable preparation. Nevertheless, irreversible structural evolution, sluggish kinetics, and water sensitivity are still the critical bottlenecks for their practical utilization. Nanoengineering may offer an opportunity to address the above issues by increasing reactivity, shortening diffusion pathways, and strengthening structural stability. Herein, a comprehensive summary of the modification strategies for LTMOs is presented, emphasizing optimizing the structure, restraining detrimental phase transition, and promoting diffusion kinetics. This review intends to facilitate an in-depth understanding of structure-composition-property correlation and offer guidance to the further development of the LTMO cathodes for next-generation energy storage systems.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Routes to high-performance layered oxide cathodes for sodium-ion batteries
    Wang, Jingqiang
    Zhu, Yan-Fang
    Su, Yu
    Guo, Jun-Xu
    Chen, Shuangqiang
    Liu, Hua-Kun
    Dou, Shi-Xue
    Chou, Shu-Lei
    Xiao, Yao
    CHEMICAL SOCIETY REVIEWS, 2024, 53 (08) : 4230 - 4301
  • [2] Homeostatic Solid Solution in Layered Transition-Metal Oxide Cathodes of Sodium-Ion Batteries
    Ren, Meng
    Zhao, Shuo
    Gao, Suning
    Zhang, Tong
    Hou, Machuan
    Zhang, Wei
    Feng, Kun
    Zhong, Jun
    Hua, Weibo
    Indris, Sylvio
    Zhang, Kai
    Chen, Jun
    Li, Fujun
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 145 (01) : 224 - 233
  • [3] Advances in layered transition metal oxide cathodes for sodium-ion batteries
    Gao, Hanqing
    Zeng, Jinjue
    Sun, Zhipeng
    Jiang, Xiangfen
    Wang, Xuebin
    MATERIALS TODAY ENERGY, 2024, 42
  • [4] Review of Layered Transition Metal Oxide Materials for Cathodes in Sodium-Ion Batteries
    Ahangari, Mehdi
    Zhou, Meng
    Luo, Hongmei
    MICROMACHINES, 2025, 16 (02)
  • [5] Recent Progress of Layered Transition Metal Oxide Cathodes for Sodium-Ion Batteries
    Liu, Qiannan
    Hu, Zhe
    Chen, Mingzhe
    Zou, Chao
    Jin, Huile
    Wang, Shun
    Chou, Shu-Lei
    Dou, Shi-Xue
    SMALL, 2019, 15 (32)
  • [6] Recent developments of layered transition metal oxide cathodes for sodium-ion batteries toward desired high performance
    Li, Siqing
    Sun, Yuanyuan
    Pang, Yuepeng
    Xia, Shuixin
    Chen, Taiqiang
    Sun, Hao
    Zheng, Shiyou
    Yuan, Tao
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2022, 17 (04)
  • [7] Challenges and Strategies toward Practical Application of Layered Transition Metal Oxide Cathodes for Sodium-Ion Batteries
    Liu, Yuehui
    Zhang, Yu-Han
    Ma, Jun
    Zhao, Jingwen
    Li, Xia
    Cui, Guanglei
    CHEMISTRY OF MATERIALS, 2023, 36 (01) : 54 - 73
  • [8] Recent advances and prospects of layered transition metal oxide cathodes for sodium-ion batteries
    Gao, Rui-Min
    Zheng, Zi-Jian
    Wang, Peng-Fei
    Wang, Cao-Yu
    Ye, Huan
    Cao, Fei-Fei
    ENERGY STORAGE MATERIALS, 2020, 30 : 9 - 26
  • [9] Recent Progress of P2-Type Layered Transition-Metal Oxide Cathodes for Sodium-Ion Batteries
    Liu Zhengbo
    Xu Xijun
    Ji Shaomin
    Zeng Liyan
    Zhang Dechao
    Liu Jun
    CHEMISTRY-A EUROPEAN JOURNAL, 2020, 26 (35) : 7747 - 7766
  • [10] Layered Oxide Cathodes for Sodium-Ion Batteries: Phase Transition, Air Stability, and Performance
    Wang, Peng-Fei
    You, Ya
    Yin, Ya-Xia
    Guo, Yu-Guo
    ADVANCED ENERGY MATERIALS, 2018, 8 (08)