Artificial intelligence-based detection and assessment of ascites on CT scans

被引:3
作者
Wang, Zheng [1 ,3 ]
Xiao, Ying
Peng, Li [2 ,6 ]
Zhang, Zhuolin [1 ,3 ]
Li, Xiaojun [4 ]
Xue, Yang [1 ,3 ]
Zhang, Jie [4 ]
Zhang, Jianglin [5 ,7 ,8 ]
机构
[1] Hunan First Normal Univ, Sch Comp Sci, Changsha 410205, Peoples R China
[2] Cent South Univ, Xiangya Hosp, Gastroenterol Dept, Changsha 410008, Peoples R China
[3] Hunan Prov Key Lab Informationizat Technol Basic E, Changsha 410205, Peoples R China
[4] Cent South Univ, Xiangya Hosp 2, Gastroenterol Dept, Changsha 410011, Peoples R China
[5] Jinan Univ, Southern Univ Sci & Technol, Shenzhen Peoples Hosp, Affiliated Hosp 1,Dept Dermatol, Shenzhen 518020, Guangdong, Peoples R China
[6] Hunan Int Sci & Technol Cooperat Base Artificial I, Changsha 410011, Peoples R China
[7] Candidate Branch Natl Clin Res Ctr Skin Dis, Shenzhen 518020, Guangdong, Peoples R China
[8] Jinan Univ, Southern Univ Sci & Technol, Shenzhen Peoples Hosp, Affiliated Hosp 1,Clin Med Coll 2,Dept Geriatr, Shenzhen 518020, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
IMAGE STEGANOGRAPHY METHOD; DEEP; CIRRHOSIS; GUIDELINES; CANCER;
D O I
10.1016/j.eswa.2023.119979
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clinically important ascites are a result of multifactorial pathogenesis. Planning therapy merely depends on precisely detecting and quantitatively classifying ascites to minimize potential adverse effects. However, manually segmenting and quantifying ascites is time-consuming asascites typically appear on multiple CT scans. In this study, an AI-based approach (SRFLab) is developed to quantify ascites from CT scans automatically. First, abdomen sections are automatically acquired from the retrospectively screened CT volume using multitask classification (AcquNet). The proposed CNN is retrieved under a task-specific objective using transfer learning. Alternatively, ascites are learned from a supervision representation fusion CNN (QuanNet) to evaluate fluid formation. Experimental results demonstrate that the proposed schema leads to good performance compared to other existing methods. AcquNet achieved a mean accuracy of 97.80% +/- and a 1.97% standard deviation, while the accuracy of QuanNet achieved a mean accuracy of 97.21% +/- and a 2.61% standard deviation. Overall, the results of this study demonstrate the effec-tiveness of the proposed model and the advancement of the volumetric assessment of ascites on CT volume images. The proposed model is more efficient at detecting and quantifying ascites in patients than clinical experts. Thus, the proposed model can support the rapid grading of ascites on CT volume images and aid radiologists in clinical practice.
引用
收藏
页数:9
相关论文
共 43 条
[31]   A new, accurate and conventional five-point method for quantitative evaluation of ascites using plain computed tomography in cancer patients [J].
Oriuchi, N ;
Nakajima, T ;
Mochiki, E ;
Takeyoshi, I ;
Kanuma, T ;
Endo, K ;
Sakamoto, J .
JAPANESE JOURNAL OF CLINICAL ONCOLOGY, 2005, 35 (07) :386-390
[32]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[33]  
Szegedy C., 2015, 2015 IEEE C COMP VIS
[34]   Natural history of grade 1 ascites in patients with liver cirrhosis [J].
Theodorakopoulos, Theodoros ;
Kalafateli, Maria ;
Kalambokis, Georgios N. ;
Samonakis, Dimitrios N. ;
Aggeletopoulou, Ioanna ;
Tsolias, Chrysostomos ;
Mantaka, Aikaterini ;
Tselekouni, Paraskevi ;
Vourli, Georgia ;
Assimakopoulos, Stelios F. ;
Gogos, Charalampos ;
Thomopoulos, Konstantinos ;
Milionis, Haralampos ;
Triantos, Christos .
ANNALS OF GASTROENTEROLOGY, 2021, 34 (01) :93-+
[35]   Real-world analysis of manual editing of deep learning contouring in the thorax region [J].
Vaassen, Femke ;
Boukerroui, Djamal ;
Looney, Padraig ;
Canters, Richard ;
Verhoeven, Karolien ;
Peeters, Stephanie ;
Lubken, Indra ;
Mannens, Jolein ;
Gooding, Mark J. ;
van Elmpt, Wouter .
PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2022, 22 :104-110
[36]   Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring [J].
van Dijk, Lisanne V. ;
Van den Bosch, Lisa ;
Aljabar, Paul ;
Peressutti, Devis ;
Both, Stefan ;
Steenbakkers, Roel. J. H. M. ;
Langendijk, Johannes A. ;
Gooding, Mark J. ;
Brouwer, Charlotte L. .
RADIOTHERAPY AND ONCOLOGY, 2020, 142 :115-123
[37]   Acute Abdomen in the Emergency Department: Is CT a Time-Limiting Factor? [J].
Wang, David Chenhan ;
Parry, Craig R. ;
Feldman, Michael ;
Tomlinson, George ;
Sarrazin, Josee ;
Glanc, Phyllis .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2015, 205 (06) :1222-1229
[38]   Automatically discriminating and localizing COVID-19 from community-acquired pneumonia on chest X-rays [J].
Wang, Zheng ;
Xiao, Ying ;
Li, Yong ;
Zhang, Jie ;
Lu, Fanggen ;
Hou, Muzhou ;
Liu, Xiaowei .
PATTERN RECOGNITION, 2021, 110 (110)
[39]   An Effective CNN Method for Fully Automated Segmenting Subcutaneous and Visceral Adipose Tissue on CT Scans [J].
Wang, Zheng ;
Meng, Yu ;
Weng, Futian ;
Chen, Yinghao ;
Lu, Fanggen ;
Liu, Xiaowei ;
Hou, Muzhou ;
Zhang, Jie .
ANNALS OF BIOMEDICAL ENGINEERING, 2020, 48 (01) :312-328
[40]  
Xie JW, 2016, PR MACH LEARN RES, V48