Cyanide-based Covalent Organic Frameworks for Enhanced Overall Photocatalytic Hydrogen Peroxide Production

被引:77
作者
Zhou, Enbo [1 ,2 ,3 ]
Wang, Futong [1 ,2 ,3 ]
Zhang, Xiang [1 ,2 ,4 ]
Hui, Yangdan [5 ]
Wang, Yaobing [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, CAS Key Lab Design & Assembly Funct Nanostruct, Fuzhou 350002, Fujian, Peoples R China
[2] Chinese Acad Sci, Fujian Inst Res Struct Matter, Fujian Prov Key Lab Nanomat, State Key Lab Struct Chem, Fuzhou 350002, Fujian, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Fujian Sci & Technol Innovat Lab Optoelect Informa, Fuzhou 350108, Fujian, Peoples R China
[5] Fuzhou Univ, Fuzhou 350108, Fujian, Peoples R China
关键词
Covalent organic framework; Photocatalytic H2O2 production; Oxygen reduction reaction; Charge-separation; Intramolecular electron transfer;
D O I
10.1002/anie.202400999
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Photocatalytic oxygen reduction to produce hydrogen peroxide (H2O2) is a promising route to providing oxidants for various industrial applications. However, the lack of well-designed photocatalysts for efficient overall H2O2 production in pure water has impeded ongoing research and practical thrusts. Here we present a cyanide-based covalent organic framework (TBTN-COFs) combining 2,4,6-trimethylbenzene-1,3,5-tricarbonitrile (TBTN) and benzotrithiophene-2,5,8-tricarbaldehyde (BTT) building blocks with water-affinity and charge-separation. The ultrafast intramolecular electron transfer (<500 fs) and prolonged excited state lifetime (748 ps) can be realized by TBTN-COF, resulting in a hole accumulated BTT and electron-rich TBTN building block. Under one sun, the 11013 mu mol h(-1) g(-1) yield rate of H2O2 can be achieved without any sacrificial agent, outperforming most previous reports. Furthermore, the DFT calculation and in situ DRIFTS spectrums suggesting a Yeager-type absorption of *O-2 & sdot;(-) intermediate in the cyanide active site, which prohibits the formation of superoxide radical and revealing a favored H2O2 production pathway.
引用
收藏
页数:6
相关论文
共 39 条
[1]   Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process [J].
Campos-Martin, Jose M. ;
Blanco-Brieva, Gema ;
Fierro, Jose L. G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (42) :6962-6984
[2]   Rational design of covalent organic frameworks for efficient photocatalytic hydrogen peroxide production [J].
Chai, Shuming ;
Chen, Xiaowen ;
Zhang, Xirui ;
Fang, Yuanxing ;
Sprick, Reiner Sebastian ;
Chen, Xiong .
ENVIRONMENTAL SCIENCE-NANO, 2022, 9 (07) :2464-2469
[3]   Covalent Organic Frameworks Containing Dual O2 Reduction Centers for Overall Photosynthetic Hydrogen Peroxide Production [J].
Chen, Dan ;
Chen, Weiben ;
Wu, Yuting ;
Wang, Lei ;
Wu, Xiaojun ;
Xu, Hangxun ;
Chen, Long .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (09)
[4]   Tunable covalent organic framework electrochemiluminescence from non-electroluminescent monomers [J].
Cui, Wei-Rong ;
Li, Ya-Jie ;
Jiang, Qiao-Qiao ;
Wu, Qiong ;
Liang, Ru-Ping ;
Luo, Qiu-Xia ;
Zhang, Li ;
Liu, Juewen ;
Qiu, Jian-Ding .
CELL REPORTS PHYSICAL SCIENCE, 2022, 3 (02)
[5]  
Dai L., 2023, ANGEW CHEM INT EDIT, V62
[6]   The atom, the molecule, and the covalent organic framework [J].
Diercks, Christian S. ;
Yaghi, Omar M. .
SCIENCE, 2017, 355 (6328)
[7]   Covalent organic frameworks for photocatalysis: Synthesis, structural features, fundamentals and performance [J].
Gong, Yun-Nan ;
Guan, Xinyu ;
Jiang, Hai-Long .
COORDINATION CHEMISTRY REVIEWS, 2023, 475
[8]   Covalent Organic Frameworks for Energy Conversion in Photocatalysis [J].
He, Ting ;
Zhao, Yanli .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (34)
[9]   Regulating Degradation Pathways of Polymers by Radical-Triggered Luminescence [J].
Hou, Yue ;
Feng, Jing ;
Tian, Rui ;
Lu, Chao ;
Duan, Xue .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (37)
[10]   Two-Phase System Utilizing Hydrophobic Metal-Organic Frameworks (MOFs) for Photocatalytic Synthesis of Hydrogen Peroxide [J].
Isaka, Yusuke ;
Kawase, Yudai ;
Kuwahara, Yasutaka ;
Mori, Kohsuke ;
Yamashita, Hiromi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (16) :5402-5406