Lower Limb Joint Torque Prediction Using Long Short-Term Memory Network and Gaussian Process Regression

被引:4
|
作者
Wang, Mengsi [1 ,2 ]
Chen, Zhenlei [3 ]
Zhan, Haoran [1 ,2 ]
Zhang, Jiyu [4 ]
Wu, Xinglong [1 ,2 ]
Jiang, Dan [5 ]
Guo, Qing [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Aeronaut & Astronaut, Chengdu 611731, Peoples R China
[2] Aircraft Swarm Intelligent Sensing & Cooperat Cont, Chengdu 611731, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Peoples R China
[4] Harbin Inst Technol, Sch Instrumentat Sci & Engn, Harbin 150001, Peoples R China
[5] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
joint torque; electromyography signals; machine learning; long short-term memory; Gaussian process regression; MUSCLE FORCES; MODEL; EXOSKELETON; MOMENTS; WALKING;
D O I
10.3390/s23239576
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The accurate prediction of joint torque is required in various applications. Some traditional methods, such as the inverse dynamics model and the electromyography (EMG)-driven neuromusculoskeletal (NMS) model, depend on ground reaction force (GRF) measurements and involve complex optimization solution processes, respectively. Recently, machine learning methods have been popularly used to predict joint torque with surface electromyography (sEMG) signals and kinematic information as inputs. This study aims to predict lower limb joint torque in the sagittal plane during walking, using a long short-term memory (LSTM) model and Gaussian process regression (GPR) model, respectively, with seven characteristics extracted from the sEMG signals of five muscles and three joint angles as inputs. The majority of the normalized root mean squared error (NRMSE) values in both models are below 15%, most Pearson correlation coefficient (R) values exceed 0.85, and most decisive factor (R2) values surpass 0.75. These results indicate that the joint prediction of torque is feasible using machine learning methods with sEMG signals and joint angles as inputs.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] An Energy-Efficiency Prediction Method in Crude Distillation Process Based on Long Short-Term Memory Network
    Zhang, Yu
    Cui, Zhe
    Wang, Mingzhang
    Liu, Bin
    Fan, Xiaomin
    Tian, Wende
    PROCESSES, 2023, 11 (04)
  • [42] Short-term wind power prediction based on combined long short-term memory
    Zhao, Yuyang
    Li, Lincong
    Guo, Yingjun
    Shi, Boming
    Sun, Hexu
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2024, 18 (05) : 931 - 940
  • [43] Time-series prediction using a regularized self-organizing long short-term memory neural network
    Duan, Hao-shan
    Meng, Xi
    Tang, Jian
    Qiao, Jun-fei
    APPLIED SOFT COMPUTING, 2023, 145
  • [44] Dynamical prediction of two meteorological factors using the deep neural network and the long short-term memory (ΙΙ)
    Shin, Ki-Hong
    Jung, Jae-Won
    Chang, Ki-Ho
    Kim, Kyungsik
    Jung, Woon-Seon
    Lee, Dong-In
    You, Cheol-Hwan
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2022, 80 (12) : 1081 - 1097
  • [45] Daily Streamflow Prediction and Uncertainty Using a Long Short-Term Memory (LSTM) Network Coupled with Bootstrap
    Wang, Zhuoqi
    Si, Yuan
    Chu, Haibo
    WATER RESOURCES MANAGEMENT, 2022, 36 (12) : 4575 - 4590
  • [46] Stocks Prices Prediction with Long Short-term Memory
    Aksehir, Zinnet Duygu
    Kilic, Erdal
    Akleylek, Sedat
    Dongul, Mesut
    Coskun, Burak
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INTERNET OF THINGS, BIG DATA AND SECURITY (IOTBDS), 2020, : 221 - 226
  • [47] Prediction of well performance in SACROC field using stacked Long Short-Term Memory (LSTM) network
    Panja, Palash
    Jia, Wei
    McPherson, Brian
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 205
  • [48] A Long Short-Term Memory deep learning network for the prediction of epileptic seizures using EEG signals
    Tsiouris, Kostas M.
    Pezoulas, Vasileios C.
    Zervakis, Michalis
    Konitsiotis, Spiros
    Koutsouris, Dimitrios D.
    Fotiadis, Dimitrios, I
    COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 99 : 24 - 37
  • [49] Traffic Flow Prediction using Long Short-Term Memory Network and Optimized Spatial Temporal Dependencies
    Ara, Zinat
    Hashemi, Mahdi
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 1550 - 1557
  • [50] A long short-term memory based wind power prediction method
    Huang, Yufeng
    Ding, Min
    Fang, Zhijian
    Wang, Qingyi
    Tan, Zhili
    Lil, Danyun
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 5927 - 5932