Lower Limb Joint Torque Prediction Using Long Short-Term Memory Network and Gaussian Process Regression

被引:4
|
作者
Wang, Mengsi [1 ,2 ]
Chen, Zhenlei [3 ]
Zhan, Haoran [1 ,2 ]
Zhang, Jiyu [4 ]
Wu, Xinglong [1 ,2 ]
Jiang, Dan [5 ]
Guo, Qing [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Aeronaut & Astronaut, Chengdu 611731, Peoples R China
[2] Aircraft Swarm Intelligent Sensing & Cooperat Cont, Chengdu 611731, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Peoples R China
[4] Harbin Inst Technol, Sch Instrumentat Sci & Engn, Harbin 150001, Peoples R China
[5] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
joint torque; electromyography signals; machine learning; long short-term memory; Gaussian process regression; MUSCLE FORCES; MODEL; EXOSKELETON; MOMENTS; WALKING;
D O I
10.3390/s23239576
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The accurate prediction of joint torque is required in various applications. Some traditional methods, such as the inverse dynamics model and the electromyography (EMG)-driven neuromusculoskeletal (NMS) model, depend on ground reaction force (GRF) measurements and involve complex optimization solution processes, respectively. Recently, machine learning methods have been popularly used to predict joint torque with surface electromyography (sEMG) signals and kinematic information as inputs. This study aims to predict lower limb joint torque in the sagittal plane during walking, using a long short-term memory (LSTM) model and Gaussian process regression (GPR) model, respectively, with seven characteristics extracted from the sEMG signals of five muscles and three joint angles as inputs. The majority of the normalized root mean squared error (NRMSE) values in both models are below 15%, most Pearson correlation coefficient (R) values exceed 0.85, and most decisive factor (R2) values surpass 0.75. These results indicate that the joint prediction of torque is feasible using machine learning methods with sEMG signals and joint angles as inputs.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Stock Price Prediction With Long Short-Term Memory Recurrent Neural Network
    Jeenanunta, Chawalit
    Chaysiri, Rujira
    Thong, Laksmey
    2018 INTERNATIONAL CONFERENCE ON EMBEDDED SYSTEMS AND INTELLIGENT TECHNOLOGY & INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY FOR EMBEDDED SYSTEMS (ICESIT-ICICTES), 2018,
  • [32] Antarctic sea ice prediction with A convolutional long short-term memory network
    Dong, Xiaoran
    Yang, Qinghua
    Nie, Yafei
    Zampieri, Lorenzo
    Wang, Jiuke
    Liu, Jiping
    Chen, Dake
    OCEAN MODELLING, 2024, 190
  • [33] STOCK MARKET PREDICTION USING LONG SHORT-TERM MEMORY (LSTM)
    Abu Nadif, Mohammad
    Samin, Towhidur Rahman
    Islam, Tohedul
    2022 SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL, COMPUTING, COMMUNICATION AND SUSTAINABLE TECHNOLOGIES (ICAECT), 2022,
  • [34] Using Long Short-Term Memory for Wavefront Prediction in Adaptive Optics
    Liu, Xuewen
    Morris, Tim
    Saunter, Chris
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: TEXT AND TIME SERIES, PT IV, 2019, 11730 : 537 - 542
  • [35] A Long Short-Term Memory Network Stock Price Prediction with Leading Indicators
    Wu, Jimmy Ming-Tai
    Sun, Lingyun
    Srivastava, Gautam
    Lin, Jerry Chun-Wei
    BIG DATA, 2021, 9 (05) : 343 - 357
  • [36] Long Short-Term Memory Network and Support Vector Regression for Electrical Load Forecasting
    Imani, Maryam
    2019 5TH INTERNATIONAL CONFERENCE ON POWER GENERATION SYSTEMS AND RENEWABLE ENERGY TECHNOLOGIES (PGSRET-2019), 2019, : 359 - 364
  • [37] Fault Detection and Diagnosis Using Combined Autoencoder and Long Short-Term Memory Network
    Park, Pangun
    Di Marco, Piergiuseppe
    Shin, Hyejeon
    Bang, Junseong
    SENSORS, 2019, 19 (21)
  • [38] HUMAN ACTIVITY RECOGNITION USING LONG SHORT-TERM MEMORY NETWORK
    Warunsin, Kulwarun
    Promjiraprawat, Kamphol
    Chitsobhuk, Orachat
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2023, 19 (03): : 973 - 990
  • [39] Predicting Solar Flares Using a Long Short-term Memory Network
    Liu, Hao
    Liu, Chang
    Wang, Jason T. L.
    Wang, Haimin
    ASTROPHYSICAL JOURNAL, 2019, 877 (02)
  • [40] Automatic Fall Detection Using Long Short-Term Memory Network
    Magalhaes, Carlos
    Ribeiro, Joao
    Leite, Argentina
    Pires, E. J. Solteiro
    Pavao, Joao
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2021, PT I, 2021, 12861 : 359 - 371