Redox signaling-driven modulation of microbial biosynthesis and biocatalysis

被引:29
作者
Chen, Na [1 ]
Du, Na [1 ]
Shen, Ruichen [2 ]
He, Tianpei [1 ]
Xi, Jing [1 ]
Tan, Jie [2 ]
Bian, Guangkai [3 ]
Yang, Yanbing [1 ]
Liu, Tiangang [1 ]
Tan, Weihong [2 ]
Yu, Lilei [1 ]
Yuan, Quan [1 ,2 ]
机构
[1] Wuhan Univ, Coll Chem & Mol Sci, Renmin Hosp, Inst Mol Med,Sch Microelect,Sch Pharmaceut Sci, Wuhan 430072, Peoples R China
[2] Hunan Univ, Coll Chem & Chem Engn, Mol Sci & Biomed Lab MBL, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Peoples R China
[3] Chinese Acad Sci, Shenzhen Inst Synthet Biol, Ctr Mat Synthet Biol, Shenzhen 518055, Peoples R China
基金
中央高校基本科研业务费专项资金资助; 中国国家自然科学基金;
关键词
EXTRACELLULAR ELECTRON-TRANSFER; IRON OXIDATION; MICROORGANISMS; COMMUNICATION; MECHANISMS; EVOLUTION; BACTERIA; PATHWAY;
D O I
10.1038/s41467-023-42561-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microbial communication can drive coordinated functions through sensing, analyzing and processing signal information, playing critical roles in biomanufacturing and life evolution. However, it is still a great challenge to develop effective methods to construct a microbial communication system with coordinated behaviors. Here, we report an electron transfer triggered redox communication network consisting of three building blocks including signal router, optical verifier and bio-actuator for microbial metabolism regulation and coordination. In the redox communication network, the Fe3+/Fe2+ redox signal can be dynamically and reversibly transduced, channeling electrons directly and specifically into bio-actuator cells through iron oxidation pathway. The redox communication network drives gene expression of electron transfer proteins and simultaneously facilitates the critical reducing power regeneration in the bio-actuator, thus enabling regulation of microbial metabolism. In this way, the redox communication system efficiently promotes the biomanufacturing yield and CO2 fixation rate of bio-actuator. Furthermore, the results demonstrate that this redox communication strategy is applicable both in co-culture and microbial consortia. The proposed electron transfer triggered redox communication strategy in this work could provide an approach for reducing power regeneration and metabolic optimization and could offer insights into improving biomanufacturing efficiency. Microbial communication has significant implications for industrial applications, but constructing communication systems which support coordinated behaviors is challenging. Here, the authors report an electron transfer triggered redox communication network and demonstrate its ability to coordinate microbial metabolism.
引用
收藏
页数:13
相关论文
共 47 条
[1]   Engineering a nicotinamide mononucleotide redox cofactor system for biocatalysis [J].
Black, William B. ;
Zhang, Linyue ;
Mak, Wai Shun ;
Maxel, Sarah ;
Cui, Youtian ;
King, Edward ;
Fong, Bonnie ;
Martinez, Alicia Sanchez ;
Siegel, Justin B. ;
Li, Han .
NATURE CHEMICAL BIOLOGY, 2020, 16 (01) :87-+
[2]   Regulation of the phototrophic iron oxidation (pio) genes in Rhodopseudomonas palustris TIE-1 is mediated by the global regulator, FixK [J].
Bose, Arpita ;
Newman, Dianne K. .
MOLECULAR MICROBIOLOGY, 2011, 79 (01) :63-75
[3]   Global Network Reorganization During Dynamic Adaptations of Bacillus subtilis Metabolism [J].
Buescher, Joerg Martin ;
Liebermeister, Wolfram ;
Jules, Matthieu ;
Uhr, Markus ;
Muntel, Jan ;
Botella, Eric ;
Hessling, Bernd ;
Kleijn, Roelco Jacobus ;
Le Chat, Ludovic ;
Lecointe, Francois ;
Maeder, Ulrike ;
Nicolas, Pierre ;
Piersma, Sjouke ;
Ruegheimer, Frank ;
Becher, Doerte ;
Bessieres, Philippe ;
Bidnenko, Elena ;
Denham, Emma L. ;
Dervyn, Etienne ;
Devine, Kevin M. ;
Doherty, Geoff ;
Drulhe, Samuel ;
Felicori, Liza ;
Fogg, Mark J. ;
Goelzer, Anne ;
Hansen, Annette ;
Harwood, Colin R. ;
Hecker, Michael ;
Hubner, Sebastian ;
Hultschig, Claus ;
Jarmer, Hanne ;
Klipp, Edda ;
Leduc, Aurelie ;
Lewis, Peter ;
Molina, Frank ;
Noirot, Philippe ;
Peres, Sabine ;
Pigeonneau, Nathalie ;
Pohl, Susanne ;
Rasmussen, Simon ;
Rinn, Bernd ;
Schaffer, Marc ;
Schnidder, Julian ;
Schwikowski, Benno ;
Van Dijl, Jan Maarten ;
Veiga, Patrick ;
Walsh, Sean ;
Wilkinson, Anthony J. ;
Stelling, Joerg ;
Aymerich, Stephane .
SCIENCE, 2012, 335 (6072) :1099-1103
[4]   Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria [J].
Byrne, James M. ;
Klueglein, Nicole ;
Pearce, Carolyn ;
Rosso, Kevin M. ;
Appel, Erwin ;
Kappler, Andreas .
SCIENCE, 2015, 347 (6229) :1473-1476
[5]   Real-Time Monitoring of Dynamic Microbial Fe(III) Respiration Metabolism with a Living Cell-Compatible Electron-Sensing Probe [J].
Chen, Na ;
Du, Na ;
Wang, Wenjie ;
Liu, Tiangang ;
Yuan, Quan ;
Yang, Yanbing .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (18)
[6]   A segmentation clock patterns cellular differentiation in a bacterial biofilm [J].
Chou, Kwang-Tao ;
Lee, Dong-Yeon D. ;
Chiou, Jian-Geng ;
Galera-Laporta, Leticia ;
Ly, San ;
Garcia-Ojalvo, Jordi ;
Suel, Gurol M. .
CELL, 2022, 185 (01) :145-+
[7]   Parsed synthesis of pyocyanin via co-culture enables context-dependent intercellular redox communication [J].
Chun, Kayla ;
Stephens, Kristina ;
Wang, Sally ;
Tsao, Chen-Yu ;
Payne, Gregory F. ;
Bentley, William E. .
MICROBIAL CELL FACTORIES, 2021, 20 (01)
[8]   Iron is not everything: unexpected complex metabolic responses between iron-cycling microorganisms [J].
Cooper, Rebecca E. ;
Wegner, Carl-Eric ;
Kuegler, Stefan ;
Poulin, Remington X. ;
Ueberschaar, Nico ;
Wurlitzer, Jens D. ;
Stettin, Daniel ;
Wichard, Thomas ;
Pohnert, Georg ;
Kuesel, Kirsten .
ISME JOURNAL, 2020, 14 (11) :2675-2690
[9]   Ecology and evolution of metabolic cross-feeding interactions in bacteria [J].
D'Souza, Glen ;
Shitut, Shraddha ;
Preussger, Daniel ;
Yousif, Ghada ;
Waschina, Silvio ;
Kost, Christian .
NATURAL PRODUCT REPORTS, 2018, 35 (05) :455-488
[10]   Redox-active antibiotics control gene expression and community behavior in divergent bacteria [J].
Dietrich, Lars E. P. ;
Teal, Tracy K. ;
Price-Whelan, Alexa ;
Newman, Dianne K. .
SCIENCE, 2008, 321 (5893) :1203-1206