Efficient gravitational wave searches with pulsar timing arrays using Hamiltonian Monte Carlo

被引:7
|
作者
Freedman, Gabriel E. [1 ]
Johnson, Aaron D. [1 ,2 ]
van Haasteren, Rutger [3 ]
Vigeland, Sarah J. [1 ]
机构
[1] Univ Wisconsin, Ctr Gravitat Cosmol & Astrophys, POB 413, Milwaukee, WI 53201 USA
[2] CALTECH, Theoret Astrophys Including Relat TAPIR, MC 350-17, Pasadena, CA 91125 USA
[3] Max Planck Inst Gravitat Phys, Albert Einstein Inst, Callinstr 38, D-30167 Hannover, Germany
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
BLACK-HOLE BINARIES; SIGNAL; LIMITS; ASTROPHYSICS; RADIATION;
D O I
10.1103/PhysRevD.107.043013
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Pulsar timing arrays (PTAs) detect low-frequency gravitational waves (GWs) by looking for correlated deviations in pulse arrival times. Current Bayesian searches use Markov chain Monte Carlo (MCMC) methods, which struggle to sample the large number of parameters needed to model the PTA and GW signals. As the data span and number of pulsars increase, this problem will only worsen. An alternative Monte Carlo sampling method, Hamiltonian Monte Carlo (HMC), utilizes Hamiltonian dynamics to produce sample proposals informed by first-order gradients of the model likelihood. This in turn allows it to converge faster to high dimensional distributions. We implement HMC as an alternative sampling method in our search for an isotropic stochastic GW background, and show that this method produces equivalent statistical results to similar analyses run with standard MCMC techniques, while requiring 100-200 times fewer samples. We show that the speed of HMC sample generation scales as OoN5/4 psr ) where Npsr is the number of pulsars, compared to OoN2psr) for MCMC methods. These factors offset the increased time required to generate a sample using HMC, demonstrating the value of adopting HMC techniques for PTAs.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Extending gravitational wave burst searches with pulsar timing arrays
    Pitkin, Matthew
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 425 (04) : 2688 - 2697
  • [2] Gravitational wave searches with pulsar timing arrays: Cancellation of clock and ephemeris noises
    Tinto, Massimo
    PHYSICAL REVIEW D, 2018, 97 (08)
  • [3] Gravitational wave research using pulsar timing arrays
    George Hobbs
    Shi Dai
    NationalScienceReview, 2017, 4 (05) : 707 - 717
  • [4] Gravitational wave research using pulsar timing arrays
    Hobbs, George
    Dai, Shi
    NATIONAL SCIENCE REVIEW, 2017, 4 (05) : 707 - 717
  • [5] Fisher formalism for anisotropic gravitational-wave background searches with pulsar timing arrays
    Ali-Haimoud, Yacine
    Smith, Tristan L.
    Mingarelli, Chiara M. F.
    PHYSICAL REVIEW D, 2020, 102 (12)
  • [6] Versatile directional searches for gravitational waves with Pulsar Timing Arrays
    Madison, D. R.
    Zhu, X. -J.
    Hobbs, G.
    Coles, W.
    Shannon, R. M.
    Wang, J. B.
    Tiburzi, C.
    Manchester, R. N.
    Bailes, M.
    Bhat, N. D. R.
    Burke-Spolaor, S.
    Dai, S.
    Dempsey, J.
    Keith, M.
    Kerr, M.
    Lasky, P.
    Levin, Y.
    Oslowski, S.
    Ravi, V.
    Reardon, D.
    Rosado, P.
    Spiewak, R.
    van Straten, W.
    Toomey, L.
    Wen, L.
    You, X.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 455 (04) : 3662 - 3673
  • [7] Gravitational wave sources for pulsar timing arrays
    Bian, Ligong
    Ge, Shuailiang
    Shu, Jing
    Wang, Bo
    Yang, Xing-Yu
    Zong, Junchao
    PHYSICAL REVIEW D, 2024, 109 (10)
  • [8] Continuous gravitational wave searches with pulsar timing arrays: Maximization versus marginalization over pulsar phase parameters
    Wang, Yan
    Mohanty, Soumya D.
    Qian, Yi-Qian
    11TH INTERNATIONAL LISA SYMPOSIUM, 2017, 840
  • [9] Effect of small interpulsar distances in stochastic gravitational wave background searches with pulsar timing arrays
    Mingarelli, Chiara M. F.
    Sidery, Trevor
    PHYSICAL REVIEW D, 2014, 90 (06):
  • [10] Nanohertz Gravitational Wave Searches with Interferometric Pulsar Timing Experiments
    Tinto, Massimo
    PHYSICAL REVIEW LETTERS, 2011, 106 (19)