A Feature Extraction Method Using VMD and Improved Envelope Spectrum Entropy for Rolling Bearing Fault Diagnosis

被引:50
|
作者
Yang, Yang [1 ]
Liu, Hui [1 ]
Han, Lijin [1 ]
Gao, Pu [1 ]
机构
[1] Beijing Inst Technol, Sch Mech Engn, Beijing 100081, Peoples R China
关键词
Feature extraction; Entropy; Fault diagnosis; Vibrations; Rolling bearings; Signal resolution; Redundancy; fault feature extraction; improved envelope spectrum entropy (IESE); rolling bearing; variational mode decomposition (VMD); EMPIRICAL MODE DECOMPOSITION; APPROXIMATE ENTROPY; ELEMENT BEARING; SEPARATION;
D O I
10.1109/JSEN.2022.3232707
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Feature extraction is a key step in intelligent bearing fault diagnosis. However, bearing vibration signals are usually nonlinear, nonstationary signal with strong noises. Extracting the effective status feature of the bearing is challenging. Thus, a new rolling bearing status feature extraction method based on variational mode decomposition (VMD) and improved envelope spectrum entropy (IESE) is proposed in this article. First, the bearing vibrational signals are decomposed into different intrinsic mode functions (IMFs) by VMD. Then, the envelope spectrum entropy (ESE) of each IMF is calculated and the IESE is obtained by reconstructing the ESE to build original feature sets. Finally, the original feature set is fused by the joint approximate diagonalization eigen (JADE) to obtain a new one. The new feature set is trained and tested by using a support vector machine (SVM) to identify the bearing status. The feasibility of the proposed method for feature extraction is verified by three experimental cases. Compared with several methods, the performance of this proposed method is better than those of other methods.
引用
收藏
页码:3848 / 3858
页数:11
相关论文
共 50 条
  • [21] A fault diagnosis method of rolling bearing based on VMD Tsallis entropy and FCM clustering
    Xing Ting-ting
    Zeng Yan
    Meng Zong
    Guo Xiao-lin
    Multimedia Tools and Applications, 2020, 79 : 30069 - 30085
  • [22] A fault diagnosis method of rolling bearing based on VMD Tsallis entropy and FCM clustering
    Xing, Ting-ting
    Zeng, Yan
    Meng, Zong
    Guo, Xiao-lin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (39-40) : 30069 - 30085
  • [23] Early fault feature extraction of rolling bearing based on optimized VMD and improved threshold denoising
    Chen P.
    Zhao X.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2021, 40 (13): : 146 - 153
  • [24] Fault Diagnosis of Rolling Bearing Based on Improved VMD and KNN
    Lu, Quanbo
    Shen, Xinqi
    Wang, Xiujun
    Li, Mei
    Li, Jia
    Zhang, Mengzhou
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [25] Improved DLMD and TKEO Method for Fault Feature Extraction of Rolling Bearing
    Luo T.
    Ma J.
    Wang X.-D.
    Yang C.-Y.
    Li Z.-R.
    Ma, Jun (mjun@kust.edu.cn), 1600, Chinese Institute of Electronics (49): : 387 - 393
  • [26] Fault diagnosis method for rolling bearing based on VMD and improved SVM optimized by METLBO
    Chao Tan
    Long Yang
    Haoran Chen
    Liang Xin
    Journal of Mechanical Science and Technology, 2022, 36 : 4979 - 4991
  • [27] An Enhanced VMD with the Guidance of Envelope Negentropy Spectrum for Bearing Fault Diagnosis
    Wang, Haien
    Jiang, Xingxing
    Guo, Wenjun
    Shi, Juanjuan
    Zhu, Zhongkui
    COMPLEXITY, 2020, 2020 (2020)
  • [28] Fault diagnosis method for rolling bearing based on VMD and improved SVM optimized by METLBO
    Tan, Chao
    Yang, Long
    Chen, Haoran
    Xin, Liang
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2022, 36 (10) : 4979 - 4991
  • [29] The double-feature extraction method based on slope entropy and symbolic dynamic entropy for the fault diagnosis of rolling bearing
    Zhang, Zhe
    Liu, Yingwei
    Han, Yuxuan
    Huangfu, Pengfei
    Ma, Zhiyuan
    Shi, Weichen
    Feng, Ke
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 211 - 226
  • [30] Research on Fault Feature Extraction Method of Rolling Bearing Based on SSA-VMD-MCKD
    Liu, Zichang
    Li, Siyu
    Wang, Rongcai
    Jia, Xisheng
    ELECTRONICS, 2022, 11 (20)