Biomass photothermal structures with carbonized durian for efficient solar-driven water evaporation

被引:36
|
作者
Zeng, Long [1 ]
Deng, Daxiang [1 ]
Zhu, Linye [1 ]
Wang, Huimin [1 ]
Zhang, Zhenkun [1 ]
Yao, Yingxue [1 ]
机构
[1] Harbin Inst Technol, Sch Mech Engn & Automat, Shenzhen 518055, Peoples R China
关键词
Solar evaporation; Carbonized durian; Photothermal structures; Light absorption; CONVERSION; PERFORMANCE; MEMBRANE; FOAM;
D O I
10.1016/j.energy.2023.127170
中图分类号
O414.1 [热力学];
学科分类号
摘要
Solar evaporation is emerging as a promising technology to address the fresh water scarcity issue. Nevertheless, the complicated fabrication process and high cost of artificial photothermal structures hindered its wide applications. Evaporators with biomass or natural plants are of relatively low water evaporation rate and energy conversion efficiency. Herein, a novel solar evaporator with three-dimensional photothermal structures is developed by carbonizing waste plants of durian skin. The carbonized durian with macroscale three-dimensional pyramid and microscale porous and petal-like structures contributes to ideal light trapping and absorption, and provides an extremely high solar spectrum absorption of 99%. The rich porous microstructures inside carbonized durian provide excellent capillary effect for sufficient water supply. It exhibits an outstanding water evaporation rate of 2.22 kg/m2h and energy conversion efficiency of 93.9% under one sunlight illumination. It also presents good salt resistance and self-cleaning ability. The daily freshwater amount in outdoor solar desalination (4.8-6.1 kg/m2 on sunny days, 3.5-4.2 kg/m2 on cloudy days) can meet water demand of more than 26 adults. These findings are believed to provide inspiration for the future development of high performance solar desalination devices with high evaporation efficiency, good salt resistance, easy production, low cost, and environmental friendliness.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Photothermal Material-Based Solar-Driven Cogeneration of Water and Electricity: An Efficient and Promising Technology
    Bao, Xiangxin
    Luo, Haopeng
    Weng, Tingyi
    Chen, Zihan
    Yan, Xing
    An, Fengxia
    Jiang, Fang
    Chen, Huan
    SMALL, 2025, 21 (10)
  • [22] Recent advanced optical adsorption regulation strategies in solar-driven evaporation for efficient clean water production: A review
    Cheng, Xiangyu
    Sun, Fanxi
    Yang, Li
    Zhou, Chenliang
    Liu, Chao
    Yu, Fang
    Wang, Xianbao
    Zhang, Qinfang
    MATERIALS RESEARCH BULLETIN, 2024, 174
  • [23] Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications
    Zhu, Liangliang
    Gao, Minmin
    Peh, Connor Kang Nuo
    Ho, Ghim Wei
    NANO ENERGY, 2019, 57 : 507 - 518
  • [24] Recycling Graphite from Spent Lithium Batteries for Efficient Solar-Driven Interfacial Evaporation to Obtain Clean Water
    Han, Sheng-Jie
    Xu, Lei
    Liu, Pan
    Wu, Jia-Li
    Labiadh, Lazhar
    Fu, Ming-Lai
    Yuan, Baoling
    CHEMSUSCHEM, 2023, 16 (24)
  • [25] Localized interfacial activation effect within interconnected porous photothermal matrix to promote solar-driven water evaporation
    Zhang, Jingjing
    Ma, Jiaxiang
    Liu, Dongmei
    Liu, Dongqing
    Han, Yu
    Xu, Ying
    Cui, Fuyi
    Wang, Wei
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (19) : 10548 - 10556
  • [26] In Situ Carbonized Polyvinyl Alcohol (PVA) Sponge by a Dehydration Reaction for Solar-Driven Interfacial Evaporation
    Cao, Hongxia
    Wang, Dong
    Sun, Zeyu
    Zhu, Yanyan
    SUSTAINABILITY, 2022, 14 (17)
  • [27] Novel strategy of highly efficient solar-driven water evaporation using MWCNTs-ZrO2-Ni@CQDs composites as photothermal materials
    Ginting, Riski Titian
    Abdullah, Hairus
    Taer, Erman
    Purba, Oktovin
    Perangin-angin, Despaleri
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 642
  • [28] Band Gap Engineering in an Efficient Solar-Driven Interfacial Evaporation System
    Ying, Peijin
    Li, Meng
    Yu, Feilin
    Geng, Yang
    Zhang, Liyang
    He, Junjie
    Zheng, Yujie
    Chen, Rong
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (29) : 32880 - 32887
  • [29] A fabric interpenetrating composite hydrospongels with permeability and evaporation enthalpy regulation for efficient solar-driven interfacial evaporation and water purification
    Xu, Bing
    Yao, Xingjie
    Zhang, Xinyu
    Chen, Feiyong
    Ma, Liang
    Fang, Shipeng
    Zhang, Xu
    Xu, Jingtao
    CHEMICAL ENGINEERING JOURNAL, 2025, 503
  • [30] A Janus porous carbon nanotubes/poly (vinyl alcohol) composite evaporator for efficient solar-driven interfacial water evaporation
    Jian, Hongwei
    Qi, Qingbin
    Wang, Wei
    Yu, Dan
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 264