Biomass photothermal structures with carbonized durian for efficient solar-driven water evaporation

被引:36
|
作者
Zeng, Long [1 ]
Deng, Daxiang [1 ]
Zhu, Linye [1 ]
Wang, Huimin [1 ]
Zhang, Zhenkun [1 ]
Yao, Yingxue [1 ]
机构
[1] Harbin Inst Technol, Sch Mech Engn & Automat, Shenzhen 518055, Peoples R China
关键词
Solar evaporation; Carbonized durian; Photothermal structures; Light absorption; CONVERSION; PERFORMANCE; MEMBRANE; FOAM;
D O I
10.1016/j.energy.2023.127170
中图分类号
O414.1 [热力学];
学科分类号
摘要
Solar evaporation is emerging as a promising technology to address the fresh water scarcity issue. Nevertheless, the complicated fabrication process and high cost of artificial photothermal structures hindered its wide applications. Evaporators with biomass or natural plants are of relatively low water evaporation rate and energy conversion efficiency. Herein, a novel solar evaporator with three-dimensional photothermal structures is developed by carbonizing waste plants of durian skin. The carbonized durian with macroscale three-dimensional pyramid and microscale porous and petal-like structures contributes to ideal light trapping and absorption, and provides an extremely high solar spectrum absorption of 99%. The rich porous microstructures inside carbonized durian provide excellent capillary effect for sufficient water supply. It exhibits an outstanding water evaporation rate of 2.22 kg/m2h and energy conversion efficiency of 93.9% under one sunlight illumination. It also presents good salt resistance and self-cleaning ability. The daily freshwater amount in outdoor solar desalination (4.8-6.1 kg/m2 on sunny days, 3.5-4.2 kg/m2 on cloudy days) can meet water demand of more than 26 adults. These findings are believed to provide inspiration for the future development of high performance solar desalination devices with high evaporation efficiency, good salt resistance, easy production, low cost, and environmental friendliness.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Carbonized Bark by Laser Treatment for Efficient Solar-Driven Interface Evaporation
    Zhao, Zejia
    Jia, Guozhi
    Liu, Yanling
    Zhang, Qiurui
    Zhou, Yaoyao
    Chang, Kai
    ACS OMEGA, 2020, 5 (23): : 13482 - 13488
  • [2] Effect of folding on 3D photothermal cones with efficient solar-driven water evaporation
    Wang, Jian-Tang
    Hong, Jin-Long
    APPLIED THERMAL ENGINEERING, 2020, 178 (178)
  • [3] Progress in MXene-based photothermal materials for solar-driven water evaporation and desalination
    Wen, Cuilian
    Li, Xiong
    Yan, Siqing
    Wen, Jiansen
    Zheng, Rongtao
    Wang, Xinyi
    Zhao, Haonan
    Zhou, Jian
    Sa, Baisheng
    Sun, Zhimei
    CHEMICAL ENGINEERING JOURNAL, 2025, 510
  • [4] MXene/aramid nanofiber films enables highly efficient photothermal conversion for solar-driven water evaporation
    Zang, X.
    Qin, Y.
    Gu, M.
    Sun, Y.
    Huang, D.
    Ji, J.
    Xue, M.
    MATERIALS TODAY SUSTAINABILITY, 2023, 24
  • [5] An overview of photothermal materials for solar-driven interfacial evaporation
    Fang, Yiming
    Gao, Huimin
    Cheng, Kaiting
    Bai, Liang
    Li, Zhengtong
    Zhao, Yadong
    Xu, Xingtao
    CHINESE CHEMICAL LETTERS, 2025, 36 (03)
  • [6] A review: Solar-driven water evaporation based on biomass carbon materials
    Wang, Jiani
    Lian, Yue
    Shao, Jingling
    Cheng, Siwei
    Zhao, He
    Zhou, Cangjian
    Yu, Guiyun
    Dai, Yong
    Zhang, Huaihao
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2025, 217
  • [7] Multi-scale CuS-rGO pyramidal photothermal structure for highly efficient solar-driven water evaporation and thermoelectric power generation
    Zeng, Long
    Deng, Daxiang
    Zhu, Linye
    Zhang, Zhenkun
    Gu, Xin
    Wang, Huiming
    Jiang, Yujie
    NANO ENERGY, 2024, 125
  • [8] Biradical-Featured Stable Organic-Small-Molecule Photothermal Materials for Highly Efficient Solar-Driven Water Evaporation
    Chen, Guanyu
    Sun, Jiangman
    Peng, Qian
    Sun, Qi
    Wang, Guan
    Cai, Yuanjing
    Gu, Xinggui
    Shuai, Zhigang
    Tang, Ben Zhong
    ADVANCED MATERIALS, 2020, 32 (29)
  • [9] Mechanochemical synthesis and interfacial engineering of photothermal polymer composites for solar-driven water evaporation
    Kim, Jihyo
    Lee, Dongjun
    Cho, Wansu
    Yang, Beomjoo
    Jung, Jong Won
    Park, Chiyoung
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2023, 44 (08) : 653 - 657
  • [10] Improved light-harvesting and thermal management for efficient solar-driven water evaporation using 3D photothermal cones
    Wang, Yuchao
    Wang, Canzhu
    Song, Xiangju
    Huang, Minghua
    Megarajan, Suresh Kumar
    Shaukat, Saleem Farooq
    Jiang, Heqing
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (21) : 9874 - 9881