Cross-Subject Emotion Recognition Based on Domain Similarity of EEG Signal Transfer

被引:18
|
作者
Ma, Yuliang [1 ]
Zhao, Weicheng [2 ]
Meng, Ming [1 ]
Zhang, Qizhong [1 ]
She, Qingshan [1 ]
Zhang, Jianhai [3 ]
机构
[1] Hangzhou Dianzi Univ, Sch Automat, Hangzhou 310018, Zhejiang, Peoples R China
[2] Hangzhou Dianzi Univ, Sch HDU ITMO Joint Inst, Hangzhou 310018, Zhejiang, Peoples R China
[3] Hangzhou Dianzi Univ, Coll Comp Sci & Technol, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Electroencephalography; Transfer learning; Correlation; Emotion recognition; Brain modeling; Distribution functions; Manifolds; Copula function; electroencephalograph (EEG); emotion recognition; local tangent space alignment (LTSA); transfer learning; KERNEL;
D O I
10.1109/TNSRE.2023.3236687
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
For solving the problem of the inevitable decline in the accuracy of cross-subject emotion recognition via Electroencephalograph (EEG) signal transfer learning due to the negative transfer of data in the source domain, this paper offers a new method to dynamically select the data suitable for transfer learning and eliminate the data that may lead to negative transfer. The method which is called cross-subject source domain selection (CSDS) consists of the next three parts. 1) First, a Frank-copula model is established according to Copula function theory to study the correlation between the source domain and the target domain, which is described by the Kendall correlation coefficient. 2) The calculation method for the Maximum Mean Discrepancy is improved to determine the distance between classes in a single source. After normalization, the Kendall correlation coefficient is superimposed, and the threshold is set to identify the source-domain data most suitable for transfer learning. 3) In the process of transfer learning, on the basis of Manifold Embedded Distribution Alignment, the Local Tangent Space Alignment method is used to provide a low-dimensional linear estimation of the local geometry of nonlinear manifolds, which maintains the local characteristics of the sample data after dimensionality reduction. Experimental results show that compared with the traditional methods, the CSDS increases the accuracy of emotion classification by approximately 2.8% and reduces the runtime by approximately 65%.
引用
收藏
页码:936 / 943
页数:8
相关论文
共 50 条
  • [1] Cross-Subject Emotion Recognition Based on Domain Similarity of EEG Signal Transfer Learning
    Ma, Yuliang
    Zhao, Weicheng
    Meng, Ming
    Zhang, Qizhong
    She, Qingshan
    Zhang, Jianhai
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 936 - 943
  • [2] Cross-subject emotion EEG signal recognition based on source microstate analysis
    Zhang, Lei
    Xiao, Di
    Guo, Xiaojing
    Li, Fan
    Liang, Wen
    Zhou, Bangyan
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [3] Cross-subject emotion recognition with contrastive learning based on EEG signal correlations
    Hu, Mengting
    Xu, Dan
    He, Kangjian
    Zhao, Kunyuan
    Zhang, Hao
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 104
  • [4] Multisource Transfer Learning for Cross-Subject EEG Emotion Recognition
    Li, Jinpeng
    Qiu, Shuang
    Shen, Yuan-Yuan
    Liu, Cheng-Lin
    He, Huiguang
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (07) : 3281 - 3293
  • [5] Cross-Subject EEG-Based Emotion Recognition with Deep Domain Confusion
    Zhang, Weiwei
    Wang, Fei
    Jiang, Yang
    Xu, Zongfeng
    Wu, Shichao
    Zhang, Yahui
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PT I, 2019, 11740 : 558 - 570
  • [6] Joint EEG Feature Transfer and Semisupervised Cross-Subject Emotion Recognition
    Peng, Yong
    Liu, Honggang
    Kong, Wanzeng
    Nie, Feiping
    Lu, Bao-Liang
    Cichocki, Andrzej
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (07) : 8104 - 8115
  • [7] Hybrid transfer learning strategy for cross-subject EEG emotion recognition
    Lu, Wei
    Liu, Haiyan
    Ma, Hua
    Tan, Tien-Ping
    Xia, Lingnan
    FRONTIERS IN HUMAN NEUROSCIENCE, 2023, 17
  • [8] EEG-based cross-subject emotion recognition using multi-source domain transfer learning
    Quan, Jie
    Li, Ying
    Wang, Lingyue
    He, Renjie
    Yang, Shuo
    Guo, Lei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 84
  • [9] Adversarial Discriminative Domain Adaptation and Transformers for EEG-based Cross-Subject Emotion Recognition
    Sartipi, Shadi
    Cetin, Mujdat
    2023 11TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING, NER, 2023,
  • [10] Exploring EEG Features in Cross-Subject Emotion Recognition
    Li, Xiang
    Song, Dawei
    Zhang, Peng
    Zhang, Yazhou
    Hou, Yuexian
    Hu, Bin
    FRONTIERS IN NEUROSCIENCE, 2018, 12