Stochastic dynamic analysis of a chemostat model of intestinal microbes with migratory effect

被引:0
作者
Dong, Yue [1 ]
Meng, Xinzhu [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 03期
关键词
stochastic chemostat model; microbial migration; extinction; persistence in mean; stationary distribution; EPIDEMIC MODEL; STATIONARY DISTRIBUTION;
D O I
10.3934/math.2023321
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes a stochastic intestinal chemostat model considering microbial migration, intraspecific competition and stochastic perturbation. First, the extinction and persistence in mean of the intestinal microbe of the chemostat model are investigated by constructing the appropriate Lyapunov functions. Second, we explore and obtain sufficient conditions for the existence and uniqueness of an ergodic stationary distribution of the model by using ergodic theory. The results show stochastic interference has a critical impact on the extinction and sustainable survival of the intestinal microbe. Eventually, numerical simulations are carried out to verify the theoretical results.
引用
收藏
页码:6356 / 6374
页数:19
相关论文
共 30 条
[1]  
[Anonymous], 2012, STOCHASTIC STABILITY
[2]   A stochastic SIRS epidemic model with nonlinear incidence rate [J].
Cai, Yongli ;
Kang, Yun ;
Wang, Weiming .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 305 :221-240
[3]   A stochastic SIS epidemic model with vaccination [J].
Cao, Boqiang ;
Shan, Meijing ;
Zhang, Qimin ;
Wang, Weiming .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 486 :127-143
[4]   Stochastic differential calculus for Gaussian and non-Gaussian noises: A critical review [J].
Falsone, G. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 56 :198-216
[5]   Analysis of the Predator-Prey Interactions: A Stochastic Model Incorporating Disease Invasion [J].
Feng, Tao ;
Meng, Xinzhu ;
Zhang, Tonghua ;
Qiu, Zhipeng .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2020, 19 (02)
[6]   A modeling approach of the chemostat [J].
Fritsch, Coralie ;
Harmand, Jerome ;
Campillo, Fabien .
ECOLOGICAL MODELLING, 2015, 299 :1-13
[7]   Stationary distribution of a chemostat model with distributed delay and stochastic perturbations [J].
Gao, Miaomiao ;
Jiang, Daqing .
APPLIED MATHEMATICS LETTERS, 2022, 123
[8]   Microbiome-wide association studies link dynamic microbial consortia to disease [J].
Gilbert, Jack A. ;
Quinn, Robert A. ;
Debelius, Justine ;
Xu, Zhenjiang Z. ;
Morton, James ;
Garg, Neha ;
Jansson, Janet K. ;
Dorrestein, Pieter C. ;
Knight, Rob .
NATURE, 2016, 535 (7610) :94-103
[9]   Dynamics of the human gut microbiome in inflammatory bowel disease [J].
Halfvarson, Jonas ;
Brislawn, Colin J. ;
Lamendella, Regina ;
Vazquez-Baeza, Yoshiki ;
Walters, William A. ;
Bramer, Lisa M. ;
D'Amato, Mauro ;
Bonfiglio, Ferdinando ;
McDonald, Daniel ;
Gonzalez, Antonio ;
McClure, Erin E. ;
Dunklebarger, Mitchell F. ;
Knight, Rob ;
Jansson, Janet K. .
NATURE MICROBIOLOGY, 2017, 2 (05)
[10]   A NONAUTONOMOUS CHEMOSTAT MODEL FOR THE GROWTH OF GUT MICROBIOME WITH VARYING NUTRIENT [J].
Hall, Brittni ;
Han, Xiaoying ;
Kloeden, Peter E. ;
Van Wyk, Hans-Werner .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (10) :2889-2908