High-Performance Inverted Organic Solar Cells via the Incorporation of Thickness-Insensitive and Low-Temperature-Annealed Nonconjugated Polymers as Electron Transport Materials

被引:2
作者
Nie, Hebing [1 ,2 ]
Busireddy, Manohar Reddy [1 ,2 ]
Shih, Hung-Min [3 ]
Ko, Chung-Wen [3 ]
Chen, Jiun-Tai [1 ,2 ]
Chang, Chia-Chih [1 ,2 ]
Hsu, Chain-Shu [1 ,2 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Dept Appl Chem, Hsinchu 30010, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Ctr Emergent Funct Matter Sci, Hsinchu 30010, Taiwan
[3] Ways Tech Corp, Taoyuan 326023, Taiwan
关键词
BHJ OSCs; electron transport layer; inverted device structure; non-fullerene acceptors; INTERFACIAL LAYER; WORK FUNCTION; EFFICIENCY; EXTRACTION; MORPHOLOGY; POLYELECTROLYTES; VOLTAGE;
D O I
10.1021/acsami.2c18946
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Developing new electron transport layers has been an effective way to fabricate high-performance bulk-heterojunction organic solar cells (OSCs). Resolving the longstanding problems associated with commonly used zinc oxide (ZnO), such as electron traps and light-induced device deterioration, however, is still a great challenge. In this study, glycerol diglycidyl ether (GDE) and 1,4-butanesultone (BS) are blended with polyethyleneimine (PEI) to produce cross-linkable PEI-based materials, PEI-GDE and PEIGDE-BS, which can function as alternative electron transport layers to replace conventional ZnO cathode-modifying layers in inverted OSCs. PEI-GDE and PEI-GDE-BS are amendable to low-temperature annealing processes to produce cross-linked films. The inverted device structure of ITO/ETL/PM6:BTP-BO-4F:PC71BM/MoO3/Ag was used to evaluate the effects of incorporating PEI-GDE and PEI-GDE-BS as electron transport materials. Compared with ZnO-based devices, the PEI-GDE- and PEI-GDE-BS-based devices exhibit significant improvements in photovoltaic performances due to smoother surface roughness, higher charge collection and exciton dissociation efficiencies, higher electron mobilities, and stronger pi-pi interactions. In particular, a PEI-GDEBS-based device shows an outstanding power conversion efficiency (PCE) of 17.55% with a V-OC of 0.83 V, a J(SC) of 27.88 mA/cm(2), and an FF of 75.96%, which offers great possibilities in the applications of flexible solar cells.
引用
收藏
页码:1718 / 1725
页数:8
相关论文
共 50 条
[31]   High-performance metal-oxide-free perovskite solar cells based on organic electron transport layer and cathode [J].
Liu, Zhihai ;
Xie, Xiaoyin ;
Liu, Guanchen ;
Lee, Eun-Cheol .
ORGANIC ELECTRONICS, 2019, 64 :195-201
[32]   Inverted Organic Solar Cells with Low-Temperature Al-Doped-ZnO Electron Transport Layer Processed from Aqueous Solution [J].
Zhang, Qianni ;
Peng, Ruizhi ;
Zhang, Chunfu ;
Chen, Dazheng ;
Lin, Zhenhua ;
Chang, Jingjing ;
Zhang, Jincheng ;
Hao, Yue .
POLYMERS, 2018, 10 (02)
[33]   A tailored TiO2 electron selective layer for high-performance flexible perovskite solar cells via low temperature UV process [J].
Jeong, Inyoung ;
Jung, Heesuk ;
Park, Minwoo ;
Park, Joon Suh ;
Son, Hae Jung ;
Joo, Jin ;
Lee, Jinwoo ;
ko, Min Jae .
NANO ENERGY, 2016, 28 :380-389
[34]   A low-temperature processed flower-like TiO2 array as an electron transport layer for high-performance perovskite solar cells [J].
Chen, Xiao ;
Tang, Li Juan ;
Yang, Shuang ;
Hou, Yu ;
Yang, Hua Gui .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (17) :6521-6526
[35]   A Mixed PC61BM-COi8DFIC Based Electron Transport Material for Inverted High-performance Perovskite Solar Cells [J].
Ali, Jazib ;
Li, Yu ;
Song, Jingnan ;
Zhang, Ming ;
Zhou, Guanqing ;
Xu, Jinqiu ;
Zhu, Lei ;
Hussain, Ahmad ;
Khan, Firoz ;
Liu, Feng .
CHEMNANOMAT, 2023, 9 (01)
[36]   Low temperature combustion synthesized indium oxide electron transport layer for high performance and stable perovskite solar cells [J].
Guo, Xing ;
Lin, Zhenhua ;
Ma, Jing ;
Hu, Zhaosheng ;
Su, Jie ;
Zhang, Chunfu ;
Zhang, Jincheng ;
Chang, Jingjing ;
Hao, Yue .
JOURNAL OF POWER SOURCES, 2019, 438
[37]   A Study on the Morphology of Poly(Triaryl Amine)-Based Hole Transport Layer via Solvent Optimization for High-Performance Inverted Perovskite Solar Cells [J].
Xie, Xiaoyin ;
Liu, Xi ;
Ding, Chufei ;
Yang, Han ;
Liu, Xueyi ;
Liu, Guanchen ;
Liu, Zhihai ;
Lee, Eun-Cheol .
INORGANICS, 2025, 13 (07)
[38]   Isomerization of two-dimensional non-fullerene electron acceptor materials for developing high-performance organic solar cells [J].
Yang, Yezi ;
Yao, Chuang ;
Li, Lei ;
Bo, Maolin ;
He, Meng ;
Wang, Jinshan .
JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (31) :11286-11295
[39]   A Low-Temperature, Solution-Processable Organic Electron-Transporting Layer Based on Planar Coronene for High-performance Conventional Perovskite Solar Cells [J].
Zhu, Zonglong ;
Xu, Jing-Qi ;
Chueh, Chu-Chen ;
Liu, Hongbin ;
Li, Zhong'an ;
Li, Xiaosong ;
Chen, Hongzheng ;
Jen, Alex K. -Y. .
ADVANCED MATERIALS, 2016, 28 (48) :10786-+
[40]   Coordination-Induced Defects Elimination of SnO2 Nanoparticles via a Small Electrolyte Molecule for High-Performance Inverted Organic Solar Cells [J].
Gao, Huaizhi ;
Wei, Xueqi ;
Yu, Runnan ;
Cao, Fong-Yi ;
Gong, Yongshuai ;
Ma, Zongwen ;
Cheng, Yen-Ju ;
Hsu, Chain-Shu ;
Tan, Zhan'ao .
ADVANCED OPTICAL MATERIALS, 2022, 10 (06)