High-Performance Inverted Organic Solar Cells via the Incorporation of Thickness-Insensitive and Low-Temperature-Annealed Nonconjugated Polymers as Electron Transport Materials

被引:2
作者
Nie, Hebing [1 ,2 ]
Busireddy, Manohar Reddy [1 ,2 ]
Shih, Hung-Min [3 ]
Ko, Chung-Wen [3 ]
Chen, Jiun-Tai [1 ,2 ]
Chang, Chia-Chih [1 ,2 ]
Hsu, Chain-Shu [1 ,2 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Dept Appl Chem, Hsinchu 30010, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Ctr Emergent Funct Matter Sci, Hsinchu 30010, Taiwan
[3] Ways Tech Corp, Taoyuan 326023, Taiwan
关键词
BHJ OSCs; electron transport layer; inverted device structure; non-fullerene acceptors; INTERFACIAL LAYER; WORK FUNCTION; EFFICIENCY; EXTRACTION; MORPHOLOGY; POLYELECTROLYTES; VOLTAGE;
D O I
10.1021/acsami.2c18946
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Developing new electron transport layers has been an effective way to fabricate high-performance bulk-heterojunction organic solar cells (OSCs). Resolving the longstanding problems associated with commonly used zinc oxide (ZnO), such as electron traps and light-induced device deterioration, however, is still a great challenge. In this study, glycerol diglycidyl ether (GDE) and 1,4-butanesultone (BS) are blended with polyethyleneimine (PEI) to produce cross-linkable PEI-based materials, PEI-GDE and PEIGDE-BS, which can function as alternative electron transport layers to replace conventional ZnO cathode-modifying layers in inverted OSCs. PEI-GDE and PEI-GDE-BS are amendable to low-temperature annealing processes to produce cross-linked films. The inverted device structure of ITO/ETL/PM6:BTP-BO-4F:PC71BM/MoO3/Ag was used to evaluate the effects of incorporating PEI-GDE and PEI-GDE-BS as electron transport materials. Compared with ZnO-based devices, the PEI-GDE- and PEI-GDE-BS-based devices exhibit significant improvements in photovoltaic performances due to smoother surface roughness, higher charge collection and exciton dissociation efficiencies, higher electron mobilities, and stronger pi-pi interactions. In particular, a PEI-GDEBS-based device shows an outstanding power conversion efficiency (PCE) of 17.55% with a V-OC of 0.83 V, a J(SC) of 27.88 mA/cm(2), and an FF of 75.96%, which offers great possibilities in the applications of flexible solar cells.
引用
收藏
页码:1718 / 1725
页数:8
相关论文
共 50 条
[21]   High-performance inverted two-dimensional perovskite solar cells using non-fullerene acceptor as electron transport layer [J].
Liu, Guanchen ;
Xie, Xiaoyin ;
Xu, Xianxiu ;
Wei, Yibin ;
Zeng, Fanming ;
Liu, Zhihai .
ORGANIC ELECTRONICS, 2018, 62 :189-194
[22]   High-performance inverted planar perovskite solar cells using a pristine fullerene mixture as an electron-transport layer [J].
Xu, Chongyang ;
Liu, Zhihai ;
Lee, Eun-Cheol .
JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (23) :6956-6963
[23]   High-Performance Electron Transport Layer via Ultrasonic Spray Deposition for Commercialized Perovskite Solar Cells [J].
Guan, Jiayi ;
Ni, Jian ;
Zhou, Xiaojun ;
Liu, Yue ;
Yin, Junyang ;
Wang, Jinlin ;
Wang, Dan ;
Zhang, Yaofang ;
Li, Juan ;
Cai, Hongkun ;
Zhang, Jianjun .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (12) :11570-11580
[24]   Low temperature aqueous solution-processed Li doped ZnO buffer layers for high performance inverted organic solar cells [J].
Lin, Zhenhua ;
Chang, Jingjing ;
Zhang, Chunfu ;
Zhang, Jincheng ;
Wu, Jishan ;
Hao, Yue .
JOURNAL OF MATERIALS CHEMISTRY C, 2016, 4 (25) :6169-6175
[25]   Fused Dithienogermolodithiophene Low Band Gap Polymers for High-Performance Organic Solar Cells without Processing Additives [J].
Zhong, Hongliang ;
Li, Zhe ;
Deledalle, Florent ;
Fregoso, Elisa Collado ;
Shahid, Munazza ;
Fei, Zhuping ;
Nielsen, Christian B. ;
Yaacobi-Gross, Nir ;
Rossbauer, Stephan ;
Anthopoulos, Thomas D. ;
Durrant, James R. ;
Heeney, Martin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (06) :2040-2043
[26]   Amino acid modified Ti3C2Tx as electron transport layers for high-performance organic solar cells [J].
Huang, Chengwen ;
Tian, Jingyu ;
Yang, Song ;
Zhao, Yujun ;
Yu, Huangzhong .
NANO ENERGY, 2023, 115
[27]   A facile strategy for enhanced performance of inverted organic solar cells based on low-temperature solution-processed SnO2 electron transport layer [J].
Huang, Shahua ;
Ali, Nasir ;
Huai, Zhaoxiang ;
Ren, Jingpeng ;
Sun, Yansheng ;
Zhao, Xiaohui ;
Fu, Guangsheng ;
Kong, Weiguang ;
Yang, Shaopeng .
ORGANIC ELECTRONICS, 2020, 78
[28]   Developing high-performance small molecule organic solar cells via a large planar structure and an electron-withdrawing central unit [J].
Zhang, Hongtao ;
Liu, Yongtao ;
Sun, Yanna ;
Li, Miaomiao ;
Kan, Bin ;
Ke, Xin ;
Zhang, Qian ;
Wan, Xiangjian ;
Chen, Yongsheng .
CHEMICAL COMMUNICATIONS, 2017, 53 (02) :451-454
[29]   A low-temperature TiO2/SnO2 electron transport layer for high-performance planar perovskite solar cells [J].
Li, Nan ;
Yan, Jin ;
Ai, Yuqian ;
Jiang, Ershuai ;
Lin, Liujin ;
Shou, Chunhui ;
Yan, Baojie ;
Sheng, Jiang ;
Ye, Jichun .
SCIENCE CHINA-MATERIALS, 2020, 63 (02) :207-215
[30]   A Versatile Organic Salt Modified SnO2 Electron Transport Layer for High-Performance Perovskite Solar Cells [J].
Peng, Xian ;
Zhao, Shuangshuang ;
Zhou, Ruonan ;
Gong, Xiaoli ;
Luo, Huxin ;
Ouyang, Yukun ;
Liu, Xingchong ;
Li, Haimin ;
Wang, Hanyu ;
Zhuang, Jia .
ADVANCED MATERIALS INTERFACES, 2021, 8 (16)