A New Sensitivity Analysis Approach Using Conditional Nonlinear Optimal Perturbations and Its Preliminary Application

被引:2
作者
Ren, Qiujie [1 ,4 ]
Mu, Mu [2 ,3 ]
Sun, Guodong [1 ,4 ]
Wang, Qiang [5 ,6 ]
机构
[1] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geoph, Beijing 100029, Peoples R China
[2] Fudan Univ, Dept Atmospher & Ocean Sci, Shanghai 200438, Peoples R China
[3] Fudan Univ, Inst Atmospher Sci, Shanghai 200438, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Hohai Univ, Key Lab Marine Hazards Forecasting, Minist Nat Resources, Nanjing 210098, Peoples R China
[6] Hohai Univ, Coll Oceanog, Nanjing 210098, Peoples R China
关键词
physical parameters; parameter uncertainty; sensitivity analysis; nonlinear optimization; land-surface process; GLOBAL SENSITIVITY; PARAMETER SENSITIVITY; SOIL-MOISTURE; WATER FLUXES; MODEL; OPTIMIZATION; UNCERTAINTY; GRASSLAND; ESTIMATOR; EXTENSION;
D O I
10.1007/s00376-022-1445-3
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Simulations and predictions using numerical models show considerable uncertainties, and parameter uncertainty is one of the most important sources. It is impractical to improve the simulation and prediction abilities by reducing the uncertainties of all parameters. Therefore, identifying the sensitive parameters or parameter combinations is crucial. This study proposes a novel approach: conditional nonlinear optimal perturbations sensitivity analysis (CNOPSA) method. The CNOPSA method fully considers the nonlinear synergistic effects of parameters in the whole parameter space and quantitatively estimates the maximum effects of parameter uncertainties, prone to extreme events. Results of the analytical g-function test indicate that the CNOPSA method can effectively identify the sensitivity of variables. Numerical results of the theoretical five-variable grassland ecosystem model show that the maximum influence of the simulated wilted biomass caused by parameter uncertainty can be estimated and computed by employing the CNOPSA method. The identified sensitive parameters can easily change the simulation or prediction of the wilted biomass, which affects the transformation of the grassland state in the grassland ecosystem. The variance-based approach may underestimate the parameter sensitivity because it only considers the influence of limited parameter samples from a statistical view. This study verifies that the CNOPSA method is effective and feasible for exploring the important and sensitive physical parameters or parameter combinations in numerical models.
引用
收藏
页码:285 / 304
页数:20
相关论文
共 48 条
  • [1] Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models
    Bonan, Gordon B.
    Doney, Scott C.
    [J]. SCIENCE, 2018, 359 (6375) : 533 - +
  • [2] The parametric sensitivity of CAM5's MJO
    Boyle, J. S.
    Klein, S. A.
    Lucas, D. D.
    Ma, H. -Y.
    Tannahill, J.
    Xie, S.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2015, 120 (04) : 1424 - 1444
  • [3] IMPLEMENTING SOBOLS QUASIRANDOM SEQUENCE GENERATOR
    BRATLEY, P
    FOX, BL
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1988, 14 (01): : 88 - 100
  • [4] Calibration of WRF model parameters using multiobjective adaptive surrogate model-based optimization to improve the prediction of the Indian summer monsoon
    Chinta, Sandeep
    Balaji, C.
    [J]. CLIMATE DYNAMICS, 2020, 55 (3-4) : 631 - 650
  • [5] ONE-AT-A-TIME PLANS
    DANIEL, C
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1973, 68 (342) : 353 - 360
  • [6] Assessing WRF model parameter sensitivity: A case study with 5 day summer precipitation forecasting in the Greater Beijing Area
    Di, Zhenhua
    Duan, Qingyun
    Gong, Wei
    Wang, Chen
    Gan, Yanjun
    Quan, Jiping
    Li, Jianduo
    Miao, Chiyuan
    Ye, Aizhong
    Tong, Charles
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (02) : 579 - 587
  • [7] Is model parameter error related to a significant spring predictability barrier for El Nio events? Results from a theoretical model
    Duan Wansuo
    Zhang Rui
    [J]. ADVANCES IN ATMOSPHERIC SCIENCES, 2010, 27 (05) : 1003 - 1013
  • [8] Importance measures in global sensitivity analysis of nonlinear models
    Homma, T
    Saltelli, A
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 1996, 52 (01) : 1 - 17
  • [9] Khalid K., 2016, International Journal of Engineering and Technology, V8, P132, DOI 10.7763/IJET.2016.V8.872
  • [10] Global sensitivity analysis: a generalized, unbiased and optimal estimator of total-effect variance
    Lamboni, Matieyendou
    [J]. STATISTICAL PAPERS, 2018, 59 (01) : 361 - 386