Pseudo-differential operators in the generalized weinstein setting

被引:3
作者
Ben Mohamed, Hassen [1 ]
Bettaibi, Youssef [1 ]
机构
[1] Univ Gabes, Fac Sci, Dept Math, Gabes, Tunisia
关键词
Generalized Weinstein operator; Generalized Weinstein Transform; Sobolev spaces; Pseudo-differential operators;
D O I
10.1007/s12215-022-00827-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the generalized Weinstein operator Delta(d)(,alpha,n)(w). For n = 0, we regain the classical Weinstein operator Delta(alpha,d)(w). We introduce and study the Sobolev spaces associated with the generalized Weinstein operator and investigate their properties. Next, we introduce a class of symbols and their associated pseudo-differential operators.
引用
收藏
页码:3345 / 3361
页数:17
相关论文
共 10 条
[1]  
Abouelaz A, 2015, INT J ANAL APPL, V9, P19
[2]  
Ben Mohamed, 2017, INT J OPEN PROBL COM, V9
[3]  
Ben Mohamed H., 2016, AN ST U OVID CONSTAN, V1, P1
[4]  
Ben Mohamed H., J MATH RES APPL
[5]  
Ben Mohamed H., 2011, INT J MATH ANAL, V5, P1353
[6]  
Ben Mohamed H., 2021, INT J MATH TRENDS TE, V67, P28, DOI [10.14445/22315373/IJMTT-V67I3P505, DOI 10.14445/22315373/IJMTT-V67I3P505]
[7]   Generalized Weinstein Sobolev-Gevrey spaces and pseudo-differential operators [J].
Ben Mohamed, Hassen ;
Chaffar, Mohamed Moktar .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (01) :273-292
[8]   Weinstein-Sobolev Spaces of Exponential Type and Applications [J].
Ben Mohamed, Hassen ;
Ghribi, Belgacem .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (03) :591-608
[9]   Boundedness and compactness of localization operators for Weinstein-Wigner transform [J].
Saoudi, Ahmed ;
Nefzi, Bochra .
JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2020, 11 (02) :675-702