A unified interaction model for multiphase flows with the lattice Boltzmann method

被引:5
|
作者
Lourenco, Ramon G. C. [1 ]
Constantino, Pedro H. [1 ]
Tavares, Frederico W. [1 ,2 ]
机构
[1] Univ Fed Rio de Janeiro, COPPE, Program Chem Engn, Rio De Janeiro, Brazil
[2] Univ Fed Rio de Janeiro, Chem Sch, Program Engn Chem & Biochem Proc, Rio De Janeiro, Brazil
来源
关键词
droplet dynamics; pseudopotential model; spinodal decomposition; thermodynamic consistency; two-phase flow; PHASE-TRANSITIONS; LIQUID-VAPOR; SIMULATION; MULTICOMPONENT; EQUATIONS; STATE; GAS;
D O I
10.1002/cjce.24604
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The lattice Boltzmann method (LBM) has been increasingly adopted for modelling multiphase fluid simulations in engineering problems. Although relatively easy to implement, the ubiquitous Shan-Chen pseudopotential model suffers from limitations such as thermodynamic consistency and the formation of spurious currents. In the literature, the Zhang-Chen, Kupershtokh et al., the beta-scheme, and the Yang-He alternative models seek to mitigate these effects. Here, through analytical manipulations, we call attention to a unified model from which these multiphase interaction forces can be recovered. Isothermal phase-transition simulations of single-component in stationary and oscillating droplet conditions, as well as spinodal decomposition calculations, validate the model numerically and reinforce that the multiphase forces are essentially equivalent. Parameters are selected based on the vapour densities at low temperatures in the Maxwell coexistence curve, where there is a narrow range of optimal values. We find that expressing the model parameters as functions of the reduced temperature further enhances the thermodynamic consistency without losing stability or increasing spurious velocities.
引用
收藏
页码:623 / 638
页数:16
相关论文
共 50 条
  • [1] A unified lattice Boltzmann model and application to multiphase flows
    Luo, Kai H.
    Fei, Linlin
    Wang, Geng
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2208):
  • [2] Unified simplified multiphase lattice Boltzmann method for ferrofluid flows and its application
    Li, Qiao-Zhong
    Lu, Zhi-Liang
    Zhou, Di
    Niu, Xiao-Dong
    Guo, Tong-Qin
    Du, Bing-Chen
    PHYSICS OF FLUIDS, 2020, 32 (09)
  • [3] Thermal lattice Boltzmann method for multiphase flows
    Kupershtokh, Alexander L.
    Medvedev, Dmitry A.
    Gribanov, Igor I.
    PHYSICAL REVIEW E, 2018, 98 (02)
  • [4] Entropic Lattice Boltzmann Method for Multiphase Flows
    Mazloomi, A. M.
    Chikatamarla, S. S.
    Karlin, I. V.
    PHYSICAL REVIEW LETTERS, 2015, 114 (17)
  • [5] Lattice Boltzmann model for axisymmetric multiphase flows
    Premnath, KN
    Abraham, J
    PHYSICAL REVIEW E, 2005, 71 (05):
  • [6] LATTICE BOLTZMANN METHOD FOR MULTIPHASE AND MULTICOMPONENT FLOWS: A REVIEW
    Seta T.
    Yamamoto K.
    Yoshino M.
    Takada N.
    Matsukuma Y.
    Yamamoto K.
    Hayashi K.
    Kimura H.
    Tomiyama A.
    Multiphase Science and Technology, 2022, 34 (03) : 47 - 61
  • [7] Dual Grid Lattice Boltzmann method for multiphase flows
    Rosales, C.
    Whyte, D. S.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 84 (09) : 1068 - 1084
  • [8] A thermal lattice Boltzmann model for evaporating multiphase flows
    Liang, Hong
    Liu, Wenyong
    Li, Yang
    Wei, Yikun
    PHYSICS OF FLUIDS, 2024, 36 (03)
  • [9] A LATTICE BOLTZMANN MODEL FOR MULTIPHASE FLUID-FLOWS
    GRUNAU, D
    CHEN, SY
    EGGERT, K
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1993, 5 (10): : 2557 - 2562
  • [10] A review of spurious currents in the lattice Boltzmann method for multiphase flows
    Kevin Connington
    Taehun Lee
    Journal of Mechanical Science and Technology, 2012, 26 : 3857 - 3863