Gradient Structure of Ti-55531 with Nano-ultrafine Grains Fabricated by Simulation and Suction Casting

被引:21
作者
Fu, Yabo [1 ,2 ]
Pan, Qingfa [1 ]
Liu, Gang [1 ,2 ]
Zhang, Guangliang [1 ,2 ]
机构
[1] Taizhou Univ, Zhejiang Prov Key Lab Cutting Tools, Taizhou 318000, Zhejiang, Peoples R China
[2] Taizhou Univ, Sch Mat Sci & Engn, Taizhou 318000, Zhejiang, Peoples R China
关键词
high-strength ductility; rare earth La; suction casting; titanium alloys; ultrafine grains; TITANIUM-ALLOYS; PLASTIC-DEFORMATION; BEHAVIOR;
D O I
10.1007/s11665-022-07278-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Optimizing the casting parameters of Ti-55531 is crucial in large aircraft castings. The thermodynamics parameters were simulated using the ProCAST software, and the properties of a gradient structure alloy with ultrafine microstructure were studied. The results indicate that the gradient structure of Ti-55531 with ultrafine grains is obtained. From the edge to the center, the gradient cooling rate decreases gradually from 88.83 to 52.79 degrees C/s and then to 37.51 degrees C/s as shown by the simulated parameters, resulting in the rapid solidification of the edge area to form the ultrafine grains. The hardness tends to strengthen with increasing radius in a gradient, from 3.67 +/- 0.12 GPa at the center, gradually increasing to 3.79 +/- 0.07 GPa at radius R1500, and finally reaching a maximum of 4.12 +/- 0.33 GPa due to the nano-ultrafine grains at radius R3000. A gradient structure can increase the strength-ductility of the Ti-55531 alloy. The compressive strength and strain are 3118 MPa and 69%, which are 36 and 30% higher compared to the non-gradient alloy. This study provides a new method for preparing gradient structures. Melting temperature of the arc melting can be calculated with T=1520.56+0.28xI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\, T \, = 1520.56 + 0.28 \times I$$\end{document}.
引用
收藏
页码:3084 / 3093
页数:10
相关论文
共 26 条
[1]   Perspectives on Titanium Science and Technology [J].
Banerjee, Dipankar ;
Williams, J. C. .
ACTA MATERIALIA, 2013, 61 (03) :844-879
[2]   Flow behavior and constitutive relationship for elevated temperature compressive deformation of a high Nb containing TiAl alloy with (α2 + γ) microstructure [J].
Chu, Yudong ;
Li, Jinshan ;
Zhao, Fengtong ;
Tang, Bin ;
Kou, Hongchao .
MATERIALS LETTERS, 2018, 210 :58-61
[3]   High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review [J].
Dai, Jingjie ;
Zhu, Jiyun ;
Chen, Chuanzhong ;
Weng, Fei .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 685 :784-798
[4]   Deformation Mechanisms in the Near-β Titanium Alloy Ti-55531 [J].
Dikovits, Martina ;
Poletti, Cecilia ;
Warchomicka, Fernando .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2014, 45A (03) :1586-1596
[5]   Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-Grained Copper [J].
Fang, T. H. ;
Li, W. L. ;
Tao, N. R. ;
Lu, K. .
SCIENCE, 2011, 331 (6024) :1587-1590
[6]   Extraordinary strength-ductility in gradient amorphous structured Zr-based alloy [J].
Fu, Yabo ;
Chen, Haonan ;
Guo, Renqing ;
Huang, Yuanding ;
Toroghinejad, Mohammad Reza .
JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 888
[7]   Mechanical behaviors of novel multiple principal elements CuAl10Fe5Ni5Mn1.2 wt% with micro-nano structures [J].
Fu, Yabo ;
Huang, Yuanding ;
Liu, Zhenzhong ;
Guo, Renqing ;
Li, Shufeng .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 843
[8]  
Gengxiang Hu., 2009, FUNDAMENTALS MAT SCI, P243
[9]   A microcantilever investigation of size effect, solid-solution strengthening and second-phase strengthening for ⟨a⟩ prism slip in alpha-Ti [J].
Gong, Jicheng ;
Wilkinson, Angus J. .
ACTA MATERIALIA, 2011, 59 (15) :5970-5981
[10]   Tensile performance and impact toughness of Ti-55531 alloy with multilevel lamellar microstructure [J].
Huang, Chaowen ;
Wang, Fengmei ;
Wen, Xin ;
Wan, Mingpan ;
Lei, Min ;
Ye, Junqin ;
Zeng, Weidong .
JOURNAL OF MATERIALS SCIENCE, 2021, 56 (14) :8848-8870