Alternated inertial subgradient extragradient method for equilibrium problems

被引:10
作者
Shehu, Yekini [1 ]
Dong, Qiao-Li [2 ]
Liu, Lulu [2 ]
Yao, Jen-Chih [3 ]
机构
[1] Zhejiang Normal Univ, Coll Math & Comp Sci, Jinhua 321004, Zhejiang, Peoples R China
[2] Civil Aviat Univ China, Coll Sci, Tianjin 300300, Peoples R China
[3] China Med Univ, Ctr Gen Educ, Taichung 40402, Taiwan
关键词
Equilibrium problem; alternated inertial step; weak convergence; linear convergence; Hilbert spaces; ALGORITHMS; CONVERGENCE; APPROXIMATIONS; SCHEME;
D O I
10.1007/s11750-021-00620-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The focus of this paper is to obtain weak and linear convergence analysis of the subgradient extragradient method with alternated inertial step for solving equilibrium problems in real Hilbert spaces. The proposed method uses self-adaptive step sizes. Weak convergence is established without Lipschitz constant of the bifunction as an input parameter. Linear convergence is obtained without the modulus of strong pseudomonotonicity and Lipschitz constant as input parameters. We report some priori and posteriori error estimates and some numerical experiments to illustrate the behavior of our proposed method with related methods.
引用
收藏
页码:1 / 30
页数:30
相关论文
共 31 条
[1]   ERROR BOUNDS FOR EULER APPROXIMATION OF LINEAR-QUADRATIC CONTROL PROBLEMS WITH BANG-BANG SOLUTIONS [J].
Alt, Walter ;
Baier, Robert ;
Gerdts, Matthias ;
Lempio, Frank .
NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2012, 2 (03) :547-570
[2]  
Bigi G., 2019, Nonlinear programming techniques for equilibria
[3]   Existence and solution methods for equilibria [J].
Bigi, Giancarlo ;
Castellani, Marco ;
Pappalardo, Massimo ;
Passacantando, Mauro .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2013, 227 (01) :1-11
[4]  
Blum E., 1994, Math. Student, V63, P123
[5]  
Bressan A., 2007, Introduction to the mathematical theory of control
[6]  
Brezis H., 1972, B UNIONE MAT ITAL, V6, P293
[7]   The subgradient extragradient method for pseudomonotone equilibrium problems [J].
Dadashi, Vahid ;
Iyiola, Olaniyi S. ;
Shehu, Yekini .
OPTIMIZATION, 2020, 69 (04) :901-923
[8]   New inertial algorithm for a class of equilibrium problems [J].
Dang Van Hieu .
NUMERICAL ALGORITHMS, 2019, 80 (04) :1413-1436
[9]  
Duc PM, 2016, PAC J OPTIM, V12, P833
[10]  
Fan K., 1972, INEQUALITIES, V3, P103