Identities derived from a particular class of generating functions for Frobenius-Euler type Simsek numbers and polynomials

被引:0
作者
Agyuz, Erkan [1 ]
机构
[1] Gaziantep Univ, Naci Topcuoglu Vocat Sch, Gaziantep, Turkiye
关键词
Apostol-type polynomials; Bernoulli numbers; Euler numbers; Generating function; Stirling numbers of the first kind; Derivative formulas; formulas; Korovkin-Bohman Modulus of; BERNOULLI;
D O I
10.2298/FIL2405531A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by aid of the derivative of a particular class of generating functions for Frobenius-Euler type Simsek numbers and polynomials, we obtain some formulas. Moreover, we derive some Riemann integral and p-adic integral formulas for the Frobenius-Euler type Simsek polynomials mentioned above. We also construct a Szasz-type linear positive operator by using generating function for Frobenius-Euler type Simsek polynomials. Finally, some numerical results of this operator with convergence properties associated with the rate of modulus are presented.
引用
收藏
页码:1531 / 1545
页数:15
相关论文
共 36 条
[1]  
Altomare F., 1994, Korovkin-Type Approximation Theory and its Applications, Vvol. 17
[2]  
[Anonymous], 1984, A treatise on generating functions
[3]  
APOSTOL TM, 1951, B AM MATH SOC, V57, P370
[4]   On New Formulas of Fibonacci and Lucas Numbers Involving Golden Ratio Associated with Atomic Structure in Chemistry [J].
Battaloglu, Rifat ;
Simsek, Yilmaz .
SYMMETRY-BASEL, 2021, 13 (08)
[5]  
Bohman H., 1952, Arkiv fr Matematik, V2, P43, DOI DOI 10.1007/BF02591381
[6]  
BONA M., 2007, Introduction to enumerative combinatorics
[7]   Polynomial Approximation of Anisotropic Analytic Functions of Several Variables [J].
Bonito, Andrea ;
DeVore, Ronald ;
Guignard, Diane ;
Jantsch, Peter ;
Petrova, Guergana .
CONSTRUCTIVE APPROXIMATION, 2021, 53 (02) :319-348
[8]  
Carlitz L., 1959, MATH MAG, V32, P247, DOI [10.2307/3029225, DOI 10.2307/3029225]
[9]  
Charalambides CA., 2002, Enumerative combinatorics
[10]  
Comtet L., 1974, Advanced Combinatorics